
Mixed-Signal Blockset™
Reference

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Mixed-Signal Blockset™ Reference
© COPYRIGHT 2019–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 1.3 (Release 2020b)
March 2021 Online only Revised for Version 2.0 (Release 2021a)
September 2021 Online only Revised for Version 2.1 (Release 2021b)
March 2022 Online only Revised for Version 2.2 (Release 2022a)
September 2022 Online only Revised for Version 2.3 (Release 2022b)
March 2023 Online only Revised for Version 2.4 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Blocks: Data Converters
1

Blocks: PLL
2

Blocks: Utilities
3

Functions: Data Converters
4

Functions: Phase-Locked Loop
5

Functions:Utilities
6

iii

Contents

Blocks: Data Converters

1

Sampling Clock Source
Generate clock signal with aperture jitter

Libraries:
Mixed-Signal Blockset / ADC / Building Blocks

Description
The Sampling Clock Source block generates either a sine wave or square wave clock with aperture
jitter impairments.

Ports
Output

clk — Output clock with aperture jitter
scalar

Output clock signal with aperture jitter, returned as a scalar. The clock is a periodic pulse train that
can be a sine wave or a square wave, based on the Clock type parameter.
Data Types: double

Parameters
Clock type — Output clock signal shape
Square wave (default) | Sine wave

Shape of the output clock signal.

• Square wave — Returns a square wave of 1 volts amplitude and specified frequency.
• Sine wave — Returns a sine wave of 1 volts amplitude and specified frequency.

Programmatic Use
Block parameter: SignalType
Type: character vector
Values: Square wave | Sine wave
Default: Square wave

Clock frequency (Hz) — Desired frequency of output clock signal
1e6 (default) | scalar

Desired frequency of the output clock signal, specified as a scalar in hertz.

Programmatic Use
Block parameter: Freq

1 Blocks: Data Converters

1-2

Type: character vector
Values: scalar
Default: 1e6

Min (V) — Minimum clock output voltage
0 (default) | real scalar

Minimum voltage of the output clock signal, specified as a real scalar in volts.

Programmatic Use
Block parameter: Min
Type: character vector
Values: real scalar
Default: 0

Max (V) — Maximum clock output voltage
1 (default) | real scalar

Maximum voltage of the output clock signal, specified as a real scalar in volts.

Programmatic Use
Block parameter: Max
Type: character vector
Values: real scalar
Default: 1

RMS aperture jitter (s) — Standard deviation of clock edge locations
1e-12 (default) | real nonnegative scalar

Standard deviation of clock edge locations, generated by an impaired clock with respect to an ideal
clock. RMS aperture jitter is specified as a real nonnegative scalar in seconds.

Aperture delay is the delay between sampling clock signal and the actual instant when the sample is
taken. Aperture jitter is the sample to sample variation between aperture delay. Aperture jitter results
in an error voltage in ADC that is proportional to the magnitude of the jitter and the slew rate of the
input signal to ADC.

Programmatic Use
Block parameter: RMSJitt
Type: character vector
Values: nonnegative real scalar
Default: 1e-12

Advanced

Specify custom seed — Specify seed
off (default) | on

Select to specify a custom seed for generating the clock signal. By default, this option is deselected.

Seed — Seed for generating clock signal
0 (default) | nonnegative real scalar

Seed for generating the clock signal, specified as a nonnegative real scalar.

 Sampling Clock Source

1-3

Programmatic Use
Block parameter: Seed
Type: character vector
Values: nonnegative real scalar
Default: 0
Dependencies

To enable this parameter, select Specify custom seed in the Advanced tab.

Specify custom initial output — Specify initial output
off (default) | on

Select to specify a custom initial output for the sampling clock source. By default, this option is
deselected.

Initial output — Initial output of sampling clock
1 (default) | real scalar

The initial output of the sampling clock source, specified as a real scalar.

Programmatic Use
Block parameter: InitialOutput
Type: character vector
Values: real scalar
Default: 0
Dependencies

To enable this parameter, select Specify custom initial output in the Advanced tab.

Enable increased buffer size — Enable increased buffer size
off (default) | on

Select to enable increased buffer size during simulation. This increases the buffer size of the Variable
Pulse Delay block inside the Sampling Clock Source block. By default, this option is deselected.

Buffer size — Number of samples of the input buffering available during simulation
50 (default) | positive integer scalar

Number of samples of the input buffering available during simulation, specified as a positive integer
scalar. This sets the buffer size of the Variable Pulse Delay block inside the Sampling Clock Source
block.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value so that
the input buffer contains all the input samples required.

Dependencies

To enable this parameter, select Enable increased buffer size in the Advanced tab.

Programmatic Use
Block parameter: NBuffer
Type: character vector
Values: positive integer scalar

1 Blocks: Data Converters

1-4

Default: 50

Version History
Introduced in R2019a

See Also
SAR ADC | Flash ADC

 Sampling Clock Source

1-5

Delta Sigma Modulator
Model a discrete delta sigma modulator based ADC

Libraries:
Mixed-Signal Blockset / ADC / Building Blocks

Description
Use the Delta Sigma Modulator block to model a discrete delta sigma modulator based ADC using a
set of different architectures. The block supports these architectures:

• Cascade of feedback resonators.
• Cascade of feedback integrators.
• Cascade of feed-forward resonators.
• Cascade of feed-forward integrators.

You can model an ADC of orders from two to six. You can also model circuit based noise.

Ports
Input

In — Analog input signal
scalar

Analog input signal, specified as a scalar.
Data Types: double

Reset — Reset Delta Sigma Modulator
scalar

Reset signal for Delta Sigma Modulator block, specified as a scalar.
Data Types: double

Output

Out — Digital output signal
scalar

Digital output signal, returned as a scalar.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

1 Blocks: Data Converters

1-6

Parameters
Delta Sigma Modulator architecture — Architecture of delta sigma modulator
CIFB (default) | CRFB | CIFF | CRFF

Architecture of the delta sigma modulator, specified as:

• CIFB — cascade of feedback integrators.
• CRFB — cascade of feedback resonators.
• CIFF — cascade of feed-forward integrators.
• CRFF — cascade of feed-forward resonators.

Programmatic Use
Block parameter: dsmArchitecture
Type: character vector
Values: CIFB | CRFB | CIFF | CRFF
Default: CIFB

Delta Sigma Modulator order — Order of delta sigma modulator
2nd order (default) | 3rd order | 4th order | 5th order | 6th order

Order of delta sigma modulator. You can choose between orders two to six.

Programmatic Use
Block parameter: dsmOrder
Type: character vector
Values: 2nd order | 3rd order | 4th order | 5th order | 6th order
Default: 2nd order

Input Parameters

Sampling frequency (Hz) — Sampling frequency of delta sigma modulator
128e3 (default) | positive real scalar

Sampling frequency of the delta sigma modulator, specified as a positive real scalar in Hz.

Programmatic Use
Block parameter: SamplingFrequency
Type: character vector
Values: positive real scalar
Default: 128e3

Quantizer levels — Number of quantizer levels in delta sigma modulator
2 (default) | positive real scalar

Number of quantizer levels in delta sigma modulator, specified as a positive real scalar.

Programmatic Use
Block parameter: NumberLevels
Type: character vector
Values: positive real scalar
Default: 2

Quantizer ouput — Range of quantizer output
[-1;1] (default) | real valued vector

 Delta Sigma Modulator

1-7

Range of the quantizer output in the delta sigma modulator architecture, specified as a vector with
real elements.
Programmatic Use
Block parameter: QuantizerOutput
Type: character vector
Values: real valued vector
Default: [-1;1]

Coefficient 'a' — Feedback/feed-forward coefficients from/to the quantizer
[0.1601 0.6515] (default) | real valued vector

Feedback coefficients from the quantizer or feed-forward coefficients to the quantizer, specified as a
vector with real elements.
Programmatic Use
Block parameter: a
Type: character vector
Values: real valued vector
Default: [0.1601 0.6515]

Coefficient 'g' — Resonator coefficients
[0.0] (default) | real valued vector

Resonator coefficients, specified as a vector with real elements.
Programmatic Use
Block parameter: g
Type: character vector
Values: real valued vector
Default: [0.0]

Coefficient 'b' — Feed-in coefficients from the modulator input to each integrator
[0.1601 0.6515 1] (default) | real valued vector

Feed-in coefficients from the modulator input to each integrator, specified as a vector with real
elements.
Programmatic Use
Block parameter: b
Type: character vector
Values: real valued vector
Default: [0.1601 0.6515 1]

Coefficient 'c' — Integrator inter-stage coefficients
[1 1] (default) | real valued vector

Integrator inter-stage coefficients, specified as a vector with real elements.
Programmatic Use
Block parameter: c
Type: character vector
Values: real valued vector
Default: [1 1]

Populate Coefficients 'a', 'g', 'b', and 'c' — Populate default values of coefficients
button

1 Blocks: Data Converters

1-8

Click to populate the default values of the coefficients 'a', 'g', 'b', and 'c'. The block calculates the
coefficient values based on the architecture and order of the delta sigma modulator.

Noise

Enable Noise Impairment — Enable noise calculations in delta sigma modulator ADC
on (default) | off

Enable noise calculations in the delta sigma modulator ADC.

Signal to noise ratio (dB) — Ratio of signal power to noise power
75 (default) | nonnegative real scalar

Ratio of signal power to noise power, specified as a nonnegative real scalar in dB.

Programmatic Use
Block parameter: SNR
Type: character vector
Values: nonnegative real scalar
Default: 75

Input Signal Power (W) — Power of input signal
0.125 (default) | real scalar

Power of the signal at the input of the delta sigma modulator, specified as a real scalar in watts.

Programmatic Use
Block parameter: InputPower
Type: character vector
Values: real scalar
Default: 0.125

System Bandwidth (Hz) — Bandwidth of delta sigma modulator system
1000 (default) | nonnegative real scalar

Bandwidth of the delta sigma modulator system,

Programmatic Use
Block parameter: BandWidth
Type: character vector
Values: nonnegative real scalar
Default: 1000

Version History
Introduced in R2021b

See Also
SAR ADC | Flash ADC | ADC Testbench

Topics
“Delta Sigma Modulator Data Converter with Half-Band Filter for Decimation”

 Delta Sigma Modulator

1-9

Flash ADC
N-bit ADC with flash architecture

Libraries:
Mixed-Signal Blockset / ADC / Architectures

Description
An N-bit flash ADC comprises of a resistive ladder that contains 2N resistors and 2N-1 comparators.

1 Blocks: Data Converters

1-10

The reference voltage of each comparator is 1 least significant bit (LSB) higher than the one below it
in the ladder. As a result, all comparators below a certain point will have input voltage greater than
the reference voltage, and a logic 1 output. All comparators above that point will have input voltage
smaller than the reference voltage, and a logic 0 output. The output of 2N-1 comparators are passed
through a priority encoder to produce the digital output. This encoding scheme is called thermometer
encoding.

Since the analog input is applied to all the comparators at once, the flash ADC architecture is very
fast. But the ADC has low resolution and high power requirements due to a large number of resistors
required to implement the architecture.

 Flash ADC

1-11

Ports
Input

analog — Analog input signal
scalar

Analog input signal, specified as a scalar.
Data Types: double

start — External clock to start conversion
scalar

External clock to start conversion, specified as a scalar. The analog to digital conversion process
starts at the rising edge of the signal at the start port.
Data Types: double

Output

digital — Converted digital output signal
scalar

Converted digital output signal, returned as scalar.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

ready — Determines whether analog to digital conversion is complete
scalar

Determines whether the analog to digital conversion is complete, returned as a scalar.
Data Types: double

Parameters
Configuration

Number of bits — Number of physical output bits
10 (default) | positive real integer in the range [1, 26]

Number of physical output bits, specified as a unitless positive real integer in the range [1, 26].
Number of bits determines the resolution of the ADC.
Programmatic Use

• Use get_param(gcb,'NBits') to view the current Number of bits.
• Use set_param(gcb,'NBits',value) to set Number of bits to a specific value.

Data Types: double

Input range (V) — ADC dynamic range
[-1 1] (default) | 2-element row vector

ADC dynamic range, specified as a 2-element row vector in volts.

1 Blocks: Data Converters

1-12

Programmatic Use

• Use get_param(gcb,'InputRange') to view the current Input range (V).
• Use set_param(gcb,'InputRange',value) to set Input range (V) to a specific value.

Data Types: double

Use external start clock — Connect to external start conversion clock
on (default) | off

Select to connect to an external start conversion clock. By default, this option is selected. If you
deselect this option, a Sampling Clock Source block inside the Flash ADC is used to generate the
start conversion clock.

Conversion start frequency (Hz) — Frequency of internal start conversion clock
1e6 (default) | positive real scalar

Frequency of internal start conversion clock, specified as a positive real scalar in hertz. Conversion
start frequency (Hz) determines the rate of the ADC.
Dependencies

This parameter is only available when Use external start clock is not selected.
Programmatic Use

• Use get_param(gcb,'StartFreq') to view the current value of Conversion start frequency
(Hz).

• Use set_param(gcb,'StartFreq',value) to set Conversion start frequency (Hz) to a
specific value.

Data Types: double

RMS aperture jitter (s) — RMS aperture jitter added to the start conversion clock
1e-12 (default) | real nonnegative scalar

RMS aperture jitter added as an impairment to the start conversion clock, specified as a real
nonnegative scalar in seconds. Set RMS aperture jitter value to zero if you want a clean clock
signal.
Dependencies

This parameter is only available when Use external start clock is not selected.
Programmatic Use

• Use get_param(gcb,'StartClkJitter') to view the current value of RMS aperture jitter
(s).

• Use set_param(gcb,'StartClkJitter',value) to set RMS aperture jitter (s) to a specific
value.

Data Types: double

Edge trigger type — Clock edge type that triggers the output update
Rising edge (default) | Falling edge | Either edge

Clock edge type that triggers the output update:

 Flash ADC

1-13

• Rising edge — the output is updated with the rising edge of the clock signal.
• Falling edge — the output is updated with the falling edge of the clock signal.
• Either edge — the output is updated with both the rising and the falling edge of the clock

signal.

Programmatic Use

• Use get_param(gcb,'Trigger') to view the current Edge trigger type.
• Use set_param(gcb,'Trigger',value) to set Edge trigger type to a specific value.

Match input scale — Inherit output polarity and data type from input
off (default) | on

Inherit the output polarity and data type from the analog input signal to the ADC. When this option is
selected, it forces the ADC to output a scalar double matched to the input's scale of the ADC.

Output polarity — Defines ADC output polarity
Auto (default) | Bipolar | Unipolar

Defines the ADC output data polarity.

If Output polarity is set to Auto, the minimum and maximum values of the output are determined by
the polarity of the Input range.

If Output polarity is set to Bipolar, the outputs are between -2Nbits-1 and 2Nbits-1-1.

If Output polarity is set to Unipolar, the outputs are between 0 and 2Nbits-1.

Dependencies

This parameter is only editable when Match input scale option is deselected.

Programmatic Use

• Use get_param(gcb,'OutputPolarity') to view the current Output polarity.
• Use set_param(gcb,'OutputPolarity',value) to set Output polarity to a specific value.

Output data type — Defines ADC output data type
fixdt(1,Nbits) (default) | fixdt(0,Nbits) | double | single | int8 | int16 | int32 | uint8 |
uint16 | uint32 | Inherit: Inherit via back propagation

Defines ADC output data type.

Unsigned integers and fixed-point types (fixdt(0,Nbits)) are not available when the Output
polarity is set to Bipolar or Auto.

Signed integers and fixed-point types (fixdt(1,Nbits)) are not available when the Output
polarity is set to Unipolar.

Dependencies

This parameter is only editable when Match input scale option is deselected.

Programmatic Use

• Use get_param(gcb,'OutDataType') to view the current Output data type.

1 Blocks: Data Converters

1-14

• Use set_param(gcb,'OutDataType',value) to set Output data type to a specific value.

Simulate using — Define how to simulate ADC
Simulink blocks (default) | System object (interpreted) | System object (code
generation)

Define how the Flash ADC block is used in the simulation. You can use the block as a Simulink® block,
or use the System object™ implementation (either interpreted or code generation) for more control.

Impairments

Enable Linearity Impairments — Enable linearity impairments in ADC simulation
off (default) | on

Select to enable linearity impairments such as offset error and gain error in ADC simulation. By
default, this option is deselected.

Offset error — Shifts quantization steps by specific value
3 LSB (default) | real scalar

Shifts quantization steps by specific value, specified as a scalar in %FS, FS, or LSB.

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is
0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

Dependencies

To enable this parameter, select Enable Linearity Impairments in the Impairments tab.
Programmatic Use
Block parameter: OffsetError
Type: character vector
Values: real scalar
Default: 3 LSB
Data Types: double

Gain error — Error on slope of ADC transfer curve
2 LSB (default) | real scalar

Error on the slope of the straight line interpolating ADC transfer curve, specified as a real scalar in
%FS, FS, or LSB.

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is
0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

 Flash ADC

1-15

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

Dependencies

To enable this parameter, select Enable Linearity Impairments in the Impairments tab.

Programmatic Use
Block parameter: GainError
Type: character vector
Values: real scalar
Default: 2 LSB
Data Types: double

Missing codes — Position of the failed comparators
[] (default) | row vector with positive real values

Position of the failed comparators, specified as a row vector with positive real values.

Dependencies

This parameter is only available when Enable Linearity Impairments is selected.

Programmatic Use

• Use get_param(gcb,'Bubbles') to view the current Missing codes.
• Use set_param(gcb,'Bubbles',value) to set Missing codes to a specific value.

Data Types: double

Enable Timing Impairments — Enable timing impairments in ADC simulation
off (default) | on

Select to enable timing impairments such as conversion delay in ADC simulation. By default, this
option is deselected.

Conversion delay (s) — Latency of ADC
0 (default) | nonnegative real scalar

Latency of the analog to digital converter, specified as a nonnegative real scalar.

Dependencies

This parameter is only available when Enable Timing Impairments is selected. If you are using the
Flash ADC in the System object mode, this value is rounded to the nearest multiple of the sample
interval.

Programmatic Use

• Use get_param(gcb,'ConversionDelay') to view the current Conversion delay (s).
• Use set_param(gcb,'ConversionDelay',value) to set Conversion delay (s) to a specific

value.

Data Types: double

1 Blocks: Data Converters

1-16

Enable increased buffer size — Enable increased buffer size
off (default) | on

Select to enable increased buffer size during the simulation. By default, this option is deselected.

Dependencies

To enable this parameter, set Simulate using to Simulink blocks in the Configuration tab and
select Enable Timing Impairments in the Impairments tab.

Buffer size — Number of extra buffer filters
100 (default) | positive real scalar

Number of extra buffer filters available during simulation, specified as a positive real scalar.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value so that
the input buffer contains all the input samples required.

Dependencies

To enable this parameter, set Simulate using to Simulink blocks in the Configuration tab. Then
select Enable Timing Impairments and Enable Increased Buffer Size in the Impairments tab.

Version History
Introduced in R2019a

See Also
SAR ADC | Aperture Jitter Measurement | ADC DC Measurement | ADC AC Measurement | ADC
Testbench

 Flash ADC

1-17

SAR ADC
N-bit successive approximation register (SAR) based ADC

Libraries:
Mixed-Signal Blockset / ADC / Architectures

Description
Successive Approximation Register (SAR) based ADC consists of a sample and hold circuit (SHA), a
comparator, an internal digital to analog converter (DAC), and a successive approximation register.

When the ADC receives the start command, SHA is placed in hold mode. The most significant bit
(MSB) of the SAR is set to logic 1, and all other bits are set to logic 0.

The output of the SAR is fed back to a DAC, whose output is compared with the incoming input signal.
If the DAC output is greater than the analog input, MSB is reset, otherwise it is left set. The next
MSB is now set to 1, and the process is repeated until every bit the SAR is compared. The final value
of the SAR at the end of this process corresponds to the analog input value. The end of the conversion
process is indicated by the ready signal.

1 Blocks: Data Converters

1-18

Ports
Input

analog — Analog input signal
scalar

Analog input signal, specified as a scalar.
Data Types: double

start — External clock to start conversion
scalar

External clock to start conversion, specified as a scalar. The analog to digital conversion process
starts at the rising edge of the signal at the start port.
Data Types: double

Output

digital — Converted digital output signal
scalar

Converted digital output signal, returned as a scalar.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

ready — Determines whether analog to digital conversion is complete
scalar

Determines whether the analog to digital conversion is complete, returned as a scalar.
Data Types: double

Parameters
Configuration

Number of bits — Number of physical output bits
8 (default) | positive real integer in the range [1, 26]

Number of physical output bits, specified as a unitless positive real integer in the range [1, 26].
Number of bits determines the resolution of the ADC.
Programmatic Use

• Use get_param(gcb,'NBits') to view the current Number of bits.
• Use set_param(gcb,'NBits',value) to set Number of bits to a specific value.

Data Types: double

Input range (V) — ADC dynamic range
[-1 1] (default) | 2-element row vector

ADC dynamic range, specified as a 2-element row vector in volts.

 SAR ADC

1-19

Programmatic Use

• Use get_param(gcb,'InputRange') to view the current Input range (V).
• Use set_param(gcb,'InputRange',value) to set Input range (V) to a specific value.

Data Types: double

Use external start clock — Connect to external start conversion clock
on (default) | off

Select to connect to an external start conversion clock. By default, this option is selected. If you
deselect this option, a Sampling Clock Source block inside the SAR ADC is used to generate the start
conversion clock.

Conversion start frequency (Hz) — Frequency of internal start conversion clock
10e3 (default) | positive real scalar

Frequency of internal start conversion clock, specified as a positive real scalar in Hz. Conversion
start frequency determines the rate of the ADC.
Dependencies

This parameter is only available when Use external start clock is not selected.
Programmatic Use

• Use get_param(gcb,'StartFreq') to view the current value of Conversion start frequency
(Hz).

• Use set_param(gcb,'StartFreq',value) to set Conversion start frequency (Hz) to a
specific value.

Data Types: double

RMS aperture jitter (s) — RMS aperture jitter added to the start conversion clock
0 (default) | real nonnegative scalar

RMS aperture jitter added as an impairment to the start conversion clock, specified as a real
nonnegative scalar in s. Set RMS aperture jitter value to zero if you want a clean clock signal.
Dependencies

This parameter is only available when Use external start clock is not selected.
Programmatic Use

• Use get_param(gcb,'StartClkJitter') to view the current value of RMS aperture jitter
(s).

• Use set_param(gcb,'StartClkJitter',value) to set RMS aperture jitter (s) to a specific
value.

Data Types: double

SAR Frequency (Hz) — Frequency of SAR clock
2e7 (default) | real scalar

Frequency of the SAR clock, specified as a real scalar in Hz. SAR Frequency (Hz) must be high
enough to allow the ADC to perform Nbits comparison, where Nbits is the Number of bits of the

1 Blocks: Data Converters

1-20

ADC. The block has one cycle overhead due to algebraic loop removal. So, the clock must run for one
additional cycle before the output is ready. So, the SAR Frequency (Hz) (fSAR) is given by the
equation fSAR ≥ (Nbits + 1)fstart, where fstart is the Conversion start frequency.

Programmatic Use

• Use get_param(gcb,'SARFreq') to view the current value of SAR Frequency (Hz).
• Use set_param(gcb,'SARFreq',value) to set SAR Frequency (Hz) to a specific value.

Match input scale — Inherit output polarity and data type from input
off (default) | on

Inherit the output polarity and data type from the analog input signal to the ADC. When this option is
selected, it forces the ADC to output a scalar double matched to the input's scale of the ADC.

Output polarity — Defines ADC output polarity
Auto (default) | Bipolar | Unipolar

Defines the ADC output data polarity.

If Output polarity is set to Auto, the minimum and maximum values of the output are determined by
the polarity of the Input range.

If Output polarity is set to Bipolar, the outputs are between -2Nbits-1 and 2Nbits-1-1.

If Output polarity is set to Unipolar, the outputs are between 0 and 2Nbits-1.

Dependencies

This parameter is only editable when Match input scale option is deselected.

Programmatic Use

• Use get_param(gcb,'OutputPolarity') to view the current Output polarity.
• Use set_param(gcb,'OutputPolarity',value) to set Output polarity to a specific value.

Output data type — Defines ADC output data type
fixdt(1,Nbits) (default) | fixdt(0,Nbits) | double | single | int8 | int16 | int32 | uint8 |
uint16 | uint32 | Inherit: Inherit via back propagation

Defines ADC output data type.

Unsigned integers and fixed-point types (fixdt(0,Nbits)) are not available when the Output
polarity is set to Bipolar or Auto.

Signed integers and fixed-point types (fixdt(1,Nbits)) are not available when the Output
polarity is set to Unipolar.

Dependencies

This parameter is only editable when Match input scale option is deselected.

Programmatic Use

• Use get_param(gcb,'OutDataType') to view the current Output data type.
• Use set_param(gcb,'OutDataType',value) to set Output data type to a specific value.

 SAR ADC

1-21

Impairments

Enable Linearity Impairments — Enable linearity impairments in ADC simulation
off (default) | on

Select to enable linearity impairments such as offset error and gain error in ADC simulation. By
default, this option is deselected.

Offset error — Shifts quantization steps by specific value
1 LSB (default) | real scalar

Shifts quantization steps by specific value, specified as a scalar in least significant bit (LSB) or %.

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is
0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

Dependencies

This parameter is only available when Enable Linearity Impairments is selected.

Programmatic Use

• Use get_param(gcb,'OffsetError') to view the current value of Offset error (LSB).
• Use set_param(gcb,'OffsetError',value) to set Offset error (LSB) to a specific value.

Data Types: double

Gain error — Error on slope of ADC transfer curve
2 LSB (default) | real scalar

Error on the slope of the straight line interpolating ADC transfer curve, specified as a real scalar in
%FS, FS, or LSB.

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is
0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

Dependencies

To enable this parameter, select Enable Linearity Impairments in the Impairments tab.

1 Blocks: Data Converters

1-22

Programmatic Use
Block parameter: GainError
Type: character vector
Values: real scalar
Default: 2 LSB
Data Types: double

Version History
Introduced in R2019a

See Also
Flash ADC | Aperture Jitter Measurement | ADC DC Measurement | ADC AC Measurement | ADC
Testbench

 SAR ADC

1-23

Binary Weighted DAC
N-bit DAC based on R-2R weighted resistor architecture

Libraries:
Mixed-Signal Blockset / DAC / Architectures

Description
The R-2R DAC is one of the most common types of Binary-Weighted DACs. It consists of a parallel
binary-weighted resistor bank. Each digital level is converted to an equivalent analog signal by the
resistor bank.

The input/output transfer curve of the binary weighted DAC can be nonmonotonic, which means that
the transfer curve can reverse its direction.

The R-2R DAC architecture is low resolution and consumes more power due to the large number of
resistors required to implement the architecture.

Ports
Input

digital — Digital input signal to DAC
integer

Digital input signal to DAC, specified as an integer.

1 Blocks: Data Converters

1-24

If the Input polarity parameter is set to Bipolar, the allowed range of the signal is [−2NBits-1,
2NBits-1].

If the Input polarity parameter is set to Unipolar, the allowed range of the signal is [0, 2NBits-1].
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

start — External clock to start conversion
scalar

External clock to start conversion, specified as a scalar. The digital-to-analog conversion process
starts at the rising edge of the signal at the start port.

Dependencies

To enable this port, select Use external start clock in the General tab.
Data Types: double

Output

analog — Converted analog output signal
scalar

Converted analog output signal, returned as a scalar.
Data Types: double

ready — Indicates whether digital-to-analog conversion is complete
scalar

Indicates whether the digital-to-analog conversion is complete, returned as a scalar.

Dependencies

To enable this port, select Show ready port in the General tab.
Data Types: double

Parameters
General

Number of bits — Number of bits in input word
5 (default) | positive real integer

Number of bits in the input word, specified as a unitless positive real integer. Number of bits
determines the resolution of the DAC.

Programmatic Use
Block parameter: NBits
Type: character vector
Values: positive real integer
Default: 5
Data Types: double

 Binary Weighted DAC

1-25

Input polarity — Polarity of input signal to DAC
Bipolar (default) | Unipolar

Polarity of the input signal to the DAC.

Programmatic Use
Block parameter: Polarity
Type: character vector
Values: Bipolar|Unipolar
Default: Bipolar

Use external start clock — Connect to external start conversion clock
on (default) | off

Select to connect to an external start conversion clock. By default, this option is selected. If you
deselect this option, a Sampling Clock Source block inside the Segmented DAC is used to generate
the start conversion clock

Conversion start frequency (Hz) — Frequency of internal start conversion clock
1e6 (default) | positive real scalar

Frequency of the internal start conversion clock, specified as a real scalar in Hz. The Conversion
start frequency parameter determines the conversion rate at the start of conversion.

Dependencies

To enable this parameter, deselect Use external start clock.

Programmatic Use
Block parameter: StartFreq
Type: character vector
Values: positive real scalar
Default: 1e6
Data Types: double

Reference (V) — Reference voltage
2 (default) | real scalar

Reference voltage of the DAC, specified as a real scalar in volts. Reference (V) helps determine the
output from the input digital code, Number of bits, and Bias (V) using the equation:

DAC output = Digital input code
2Number of bits Reference + Bias.

Programmatic Use
Block parameter: Ref
Type: character vector
Values: real scalar
Default: 2
Data Types: double

Bias (V) — Bias voltage added to output
0 (default) | real scalar

1 Blocks: Data Converters

1-26

Bias voltage added to the output of the DAC, specified as a real scalar in volts. Bias (V) helps
determine the output from the input digital code, Number of bits, and Reference (V) using the
equation:

DAC output = Digital input code
2Number of bits Reference + Bias.

Programmatic Use
Block parameter: Bias
Type: character vector
Values: real scalar
Default: 0
Data Types: double

Show ready port — Enable ready port on block
off (default) | on

Select to enable the ready port on the block. This option is deselected by default.

Impairments

Enable linearity impairments — Enable offset and gain errors in DAC simulation
on (default) | off

Select to enable impairments such as offset error and gain error in DAC simulation. This parameter is
selected. by default.

Offset error — Shifts quantization steps by specific value
0 LSB (default) | real scalar

Shifts quantization steps by a specific value, specified as a scalar in %FS (percentage full scale), FS
(full scale), or LSB (least significant bit).

Offset error is applied before Reference (V) and Bias (V).

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is
0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

Dependencies

To enable this parameter, select Enable linearity impairments in the Impairments tab.

Programmatic Use
Block parameter: OffsetError
Type: character vector
Values: real scalar

 Binary Weighted DAC

1-27

Default: 0 LSB
Data Types: double

Gain error — Error in slope of DAC transfer curve
0 LSB (default) | real scalar

Error in the slope of the straight line interpolating the DAC transfer curve, specified as a real scalar
in %FS (percentage full scale), FS (full scale), or LSB (least significant bit).

Gain error is applied before Reference (V) and Bias (V).

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is
0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

Dependencies

To enable this parameter, select Enable linearity impairments in the Impairments tab.

Programmatic Use
Block parameter: GainError
Type: character vector
Values: real scalar
Default: 0 LSB
Data Types: double

Enable timing impairments — Enable timing impairments in DAC simulation
on (default) | off

Select to enable timing impairments such as settling time or slew rate in DAC simulation. This
parameter is selected. by default.

Specify switch timing using — Specify how DAC calculates switch timing
Settling time (default) | Slew rate

Specify whether the Binary Weighted DAC calculates switch timing using the settling time
parameters or the slew rate parameters.

Dependencies

To enable this parameter, select Enable timing impairments in the Impairments tab.

Settling time (s) — Time required for output to settle
2e-7 (default) | nonnegative real scalar

The time required for the output of the DAC to settle to within some fraction of its final value,
specified as a nonnegative real scalar in seconds.

1 Blocks: Data Converters

1-28

Dependencies

To enable this parameter, select Enable timing impairments and set Specify switch timing using
to Settling time in the Impairments tab.

Programmatic Use
Block parameter: SettlingTime
Type: character vector
Values: real scalar
Default: 2e-7
Data Types: double

Settling time tolerance (LSB) — Tolerance for calculating settling time
0.5 (default) | positive real scalar

The tolerance allowed for calculating settling time, specified as a positive real scalar in LSB. The
output of the DAC must settle within the Settling time tolerance (LSB) by Settling time (s).

Dependencies

To enable this parameter, select Enable timing impairments and set Specify switch timing using
to Settling time in the Impairments tab.

Programmatic Use
Block parameter: SettlingTimeTolerance
Type: character vector
Values: positive real scalar
Default: 0.5
Data Types: double

Rising slew rate — Switch rising slew rate for DAC
5015625 (default) | positive real scalar | positive real vector

Switch the rising slew rate for the DAC, specified as a positive real scalar or vector. If Rising slew
rate is scalar, it specifies the same slew rate for all the switches. If Rising slew rate is a vector of
length Nbits, it specifies the slew rate for each individual switch.

Dependencies

To enable this parameter, select Enable timing impairments and set Specify switch timing using
to Slew rate in the Impairments tab.

Programmatic Use
Block parameter: RisingSlewRate
Type: character vector
Values: positive real scalar | positive real vector
Default: 5015625

Falling slew rate — Switch falling slew rate for DAC
-5015625 (default) | negative real scalar | negative real vector

Switch the falling slew rate for the DAC, specified as a positive real scalar or vector. If Falling slew
rate is scalar, it specifies the same slew rate for all the switches. If Falling slew rate is a vector of
length Nbits, it specifies the slew rate for each individual switch.

 Binary Weighted DAC

1-29

Dependencies

To enable this parameter, select Enable timing impairments and set Specify switch timing using
to Slew rate in the Impairments tab.

Programmatic Use
Block parameter: FallingSlewRate
Type: character vector
Values: negative real scalar | negative real vector
Default: -5015625

Version History
Introduced in R2020a

See Also
DAC Testbench | DAC DC measurement | DAC AC measurement | inldnl

1 Blocks: Data Converters

1-30

Segmented DAC
Convert large digital input to analog signal using arrangement of smaller DACs

Libraries:
Mixed-Signal Blockset / DAC / Architectures

Description
The Segmented DAC block converts a large digital signal into analog output by splitting it over
several smaller DACs. The Segmented DAC block supports up to five binary-weighted segmented
DACs.

Ports
Input

digital — Digital input signal
integer

Digital input signal to DAC, specified as an integer.

If the Input polarity parameter is set to Bipolar, the allowed range of the signal is [−2NBits-1,
2NBits-1].

If the Input polarity parameter is set to Unipolar, the allowed range of the signal is [0, 2NBits-1].
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

start — External clock to start conversion
scalar

External clock to start conversion, specified as a scalar. The digital to-analog conversion process
starts at the rising edge of the signal at the start port.

Dependencies

To enable this port, select Use external start clock.
Data Types: double

Output

analog — Converted analog output signal
scalar

Converted analog output signal, returned as a scalar.
Data Types: double

 Segmented DAC

1-31

Parameters
Input polarity — Define DAC input data polarity
Unipolar (default) | Bipolar

Define the polarity of the DAC input data. Set Input polarity to:

• Unipolar when the digital input can only be positive.
• Bipolar when the digital input can be both positive and negative.

Programmatic Use
Block parameter: Polarity
Type: character vector
Values: Unipolar | Bipolar
Default: Unipolar

Use external start clock — Connect to external start conversion clock
on (default) | off

Select to connect to an external start conversion clock. This option is selected by default. If you
deselect this option, a Sampling Clock Source block inside the Segmented DAC block is used to
generate the start conversion clock.

Conversion start frequency (Hz) — Frequency of internal start conversion clock
1e6 (default) | real scalar

Frequency of the internal start conversion clock, specified as a real scalar in Hz. The Conversion
start frequency parameter determines the conversion rate at the start of conversion.
Dependencies

To enable this parameter, deselect Use external start clock.
Programmatic Use
Block parameter: StartFreq
Type: character vector
Values: real scalar
Default: 1e6

Reference (V) — DAC output reference magnitude
0.5 (default) | real scalar

The reference magnitude of the DAC output, specified as a real scalar in volts. Reference (V) is one
least significant bit (LSB) greater than the maximum achievable output.
Programmatic Use
Block parameter: Ref
Type: character vector
Values: real scalar
Default: 0.5

Bias (V) — Difference between analog output for code zero and analog zero
0 (default) | real scalar

The difference between the analog output for code zero and analog zero in an unimpaired DAC,
specified as a real scalar in volts.

1 Blocks: Data Converters

1-32

Programmatic Use
Block parameter: Bias
Type: character vector
Values: real scalar
Default: 0

Settling time (s) — Time required for output to settle
2e-7 (default) | nonnegative real scalar

The time required for the output of the DAC to settle to within some fraction of its final value,
specified as a nonnegative real scalar in seconds.
Programmatic Use
Block parameter: SettlingTime
Type: character vector
Values: real scalar
Default: 2e-7

Settling time tolerance (LSB) — Tolerance for calculating settling time
0.5 (default) | positive real scalar

The tolerance allowed for calculating settling time, specified as a positive real scalar in LSB. The
output of the DAC must settle within the Settling time tolerance (LSB) by Settling time (s).
Programmatic Use
Block parameter: SettlingTimeTolerance
Type: character vector
Values: positive real scalar
Default: 0.5

Segment settings

Topology — Topology of base DAC segment
Binary Weighted (default)

The topology of the base DAC for the segment. You can only use a Binary Weighted DAC.

Bits — Number of physical input bits for DAC segment
real scalar greater than 2

Number of physical input bits for the DAC segment, specified as a real scalar greater than 2. For the
first two DAC segments, the default value of Bits is 4. For subsequent segments, the default value is
2.

Offset error — Shift quantization steps
0 (default) | real scalar

Shift quantization steps by the value you provide in Offset error parameter, specified as a real scalar.

Offset error unit — Unit of offset error
LSB (default) | FS | %FS

Unit of offset error, specified as LSB, full scale (FS), or percentage full scale (%FS).

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is

 Segmented DAC

1-33

0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

Gain error — Error in slope of DAC transfer curve
0 (default) | real scalar

Error in the slope of the DAC transfer curve, specified as a real scalar.

Gain error unit — Unit of gain error
LSB (default) | FS | %FS

Unit of gain error, specified as LSB, full scale (FS), or percentage full scale (%FS).

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is
0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

New segment — Add new DAC segment
button

Click to add a new DAC segment with default values. Currently you can add up to five DAC segments
to the Segmented DAC block.

Duplicate selected — Duplicate selected segment
button

Click to add a new DAC segment by duplicating a selected segment. Currently you can add up to five
segments to the Segmented DAC block.

Delete selected — Delete selected segment
button

Click to delete the selected DAC segment from the Segmented DAC block.

Version History
Introduced in R2021a

See Also
DAC Testbench | Binary Weighted DAC

1 Blocks: Data Converters

1-34

ADC AC Measurement
Measure AC performance metrics of ADC output

Libraries:
Mixed-Signal Blockset / ADC / Measurements & Testbenches

Description
The ADC AC Measurement block measures ADC AC performance metrics such as signal to noise ratio
(SNR), signal to noise and distortion radio (SINAD), spurious free dynamic range (SFDR), effective
number of bits (ENOB), noise floor, and conversion delay. You can use ADC AC Measurement block to
validate the ADC architectural models provided in Mixed-Signal Blockset, or you can use an ADC of
your own implementation

Ports
Input

digital — Converted digital signal from ADC
scalar

Converted digital signal from an ADC, specified as a scalar.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

ready — Indicates whether analog to digital conversion is complete
scalar

Indicates whether the analog to digital conversion is complete, specified as a scalar.
Data Types: double

start — External conversion start clock
scalar

External conversion start clock, specified as a scalar. The analog to digital conversion process starts
at the rising edge of the signal at the start port.
Data Types: double

Parameters
Distortion measurement type — Type of distortion to measure
Harmonic (default) | Intermodulation

Type of distortion the ADC AC Measurement block is set to measure, specified as Harmonic or
Intermodulation.

 ADC AC Measurement

1-35

Programmatic Use
Block parameter: DistortionMeasurement
Type: character vector
Values: Harmonic | Intermodulation
Default: Harmonic

Analog stimulus frequency (Hz) — Frequency of the analog input signal to ADC
positive real scalar | positive real valued vector

Frequency of the analog input signal to an ADC block, specified as a positive real scalar in hertz.
Analog stimulus frequency must match the input frequency to the ADC device under test.

• When the ADC AC Measurement is set to measure the Harmonic distortion, the default value of
Analog stimulus frequency is 10000.

• When the ADC AC Measurement is set to measure the Intermodulation distortion, the default
value of Analog stimulus frequency is [9000,11000].

Analog stimulus frequency needs to satisfy two requirements:

• All the output codes of the ADC must be activated.
• The Analog stimulus frequency must not share any common multiples other than 1 with the

Start conversion frequency.

To satisfy both the conditions, use the equation fanalog = J
M fstart [2],

where:

fanalog is the analog signal frequency,

fstart is the start conversion frequency,

M > 2Nbits · π, where Nbits is the number of bits of the ADC,

and J is an integer with no common factors with M.

Programmatic Use
Block parameter: InputFrequency
Type: character vector
Values: positive real scalar | positive real valued vector
Default: 10000

Resolution bandwidth (Hz) — Resolution bandwidth
positive real scalar

Resolution bandwidth, specified as a positive real scalar in hertz. This parameter defines the smallest
positive frequency that can be resolved. By default, this parameter is calculated automatically. You
can deselect Set automatically to customize the value.

• When the ADC AC Measurement is set to measure the Harmonic distortion, the default value of
Resolution bandwidth (Hz) is 1000.

• When the ADC AC Measurement is set to measure the Intermodulation distortion, the default
value of Resolution bandwidth (Hz) is 900.

1 Blocks: Data Converters

1-36

Programmatic Use
Block parameter: RBW
Type: character vector
Values: positive real scalar
Default: 1000

Number of bits — Number of physical bits in ADC
5 (default) | positive real integer

Number of physical bits in ADC, specified as a unitless positive real integer. Number of bits must
match the resolution specified in the ADC block.

Programmatic Use
Block parameter: NBits
Type: character vector
Values: positive real integer
Default: 5

Start conversion frequency (Hz) — Frequency of the start conversion clock of the ADC
10e6 (default) | positive real scalar

Frequency of the start conversion clock of the ADC, specified as a positive real scalar in hertz. Start
conversion frequency must match the frequency of the start conversion clock of the ADC block.

Programmatic Use
Block parameter: Frequency
Type: character vector
Values: positive real scalar
Default: 10e6

Hold off time (s) — Delays measurement analysis to avoid corruption by transients
0 (default) | nonnegative real scalar

Delays measurement analysis to avoid corruption by transients, specified as a nonnegative real scalar
in seconds.

Programmatic Use
Block parameter: HoldOffTime
Type: character vector
Values: nonnegative real scalar
Default: 0

Recommended min. simulation stop time (s) — Minimum time simulation must run for meaningful
result
0.009 (default) | positive real scalar

Minimum time the simulation must run to obtain meaningful results, specified as a positive real
scalar in seconds.

For AC measurement, the simulation must run so that the ADC can generate 6 spectral updates of the
ADC output. The time to generate one spectral output based on Welch's method [1] on page 1-39 is
given by:

t = 1.5 · SamplingFrequency
RBW

 ADC AC Measurement

1-37

where SamplingFrequency and RBW are the sampling frequency and resolution bandwidth of the
spectrum estimator inside the ADC Testbench block.

This parameter is only reported by the testbench and is not editable.
Data Types: double

Set as model stop time — Automatically set recommended min. simulation stop time as model stop
time
button

Click to automatically set the Recommended min. simulation stop time (s) as the stop time of the
Simulink model.

Output result to base workspace — Store detailed test results to base workspace
off (default) | on

Store detailed test results in the base workspace for further processing at the end of simulation. By
default, this option is not selected.

Workspace variable name — Name of the variable that stores detailed test results
adc_ac_out (default) | character string

Name of the variable that stores detailed test results, specified as a character string.

Dependencies

This parameter is only available when Output result to base workspace is selected.

Programmatic Use
Block parameter: VariableName
Type: character vector
Values: character string
Default: adc_ac_out

Show spectrum analyzer during simulation — Displays spectrum analyzer during simulation
off (default) | on

Displays spectrum analyzer during simulation. By default, this option is not selected.

More About
SNR

Signal to noise ratio or SNR is the ratio of the RMS signal amplitude to the mean value of the root-
sum-squares of all other spectral components, excluding the DC and first five harmonics.

SINAD

Signal to noise and distortion ratio, or SINAD is the ratio of the RMS signal amplitude to the mean
value of the root-sum-squares of all other spectral components and harmonics, excluding DC.

1 Blocks: Data Converters

1-38

SFDR

Spurious free dynamic range or SFDR is the ratio of the RMS signal amplitude to the RMS value of
the peak spurious content, measured over the entire first Nyquist zone (DC to half of sampling
frequency).

ENOB

Effective number of bits or ENOB represents the actual resolution of an ADC after considering
internal noise and errors. It is given by ENOB = SINAD−1.76

6.02 .

Version History
Introduced in R2019a

References
[1] Spectrum Analyzer, DSP System Toolbox, MathWorks Documentation.

[2] IEEE Std 1241-2010. "IEEE Standard for Terminology and Test Methods for Analog-to-Digital
Converters," pp. 29-30, 14 January 2011.

See Also
SAR ADC | Flash ADC | ADC Testbench | ADC DC Measurement

 ADC AC Measurement

1-39

ADC DC Measurement
Measure DC performance metrics of ADC output

Libraries:
Mixed-Signal Blockset / ADC / Measurements & Testbenches

Description
The ADC DC Measurement block measures ADC DC performance metrics such as offset error, gain
error, integral nonlinearity (INL), and differential nonlinearity (DNL). You can use ADC DC
Measurement block to validate the ADC architectural models provided in Mixed-Signal Blockset, or
you can use an ADC of your own implementation.

Ports
Input

analog — Analog input signal to ADC
scalar

Analog input signal to ADC block, specified as a scalar.
Data Types: double

start — External conversion start clock
scalar

External conversion start clock, specified as a scalar. The analog to digital conversion process starts
at the rising edge of the signal at the start port.
Data Types: double

digital — Converted digital signal from ADC
scalar

Converted digital signal from an ADC, specified as a scalar.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

ready — Indicates whether analog to digital conversion is complete
scalar

Indicates whether the analog to digital conversion is complete, specified as a scalar.
Data Types: double

1 Blocks: Data Converters

1-40

Parameters
Number of bits — Number of physical bits in ADC
5 (default) | positive real integer

Number of physical bits in ADC, specified as a unitless positive real integer. Number of bits must
match the resolution specified in the ADC block.

Programmatic Use

• Use get_param(gcb,'NBits') to view the current Number of bits.
• Use set_param(gcb,'NBits',value) to set Number of bits to a specific value.

Start conversion frequency (Hz) — Frequency of the start conversion clock of ADC
10e6 (default) | positive real scalar

Frequency of the start conversion clock of the ADC, specified as a positive real scalar in hertz. Start
conversion frequency must match the frequency of the start conversion clock of the ADC block.
This parameter is used to calculate Recommended simulation stop time.

Programmatic Use

• Use get_param(gcb,'Frequency') to view the current value of Start conversion frequency.
• Use set_param(gcb,'Frequency',value) to set Start conversion frequency to a specific

value.

Input range (V) — Dynamic range of ADC
[-1 1] (default) | 2-element vector

Dynamic range of the ADC, specified as a 2-element vector in V. The two vector elements represent
the minimum and maximum values of the dynamic range, from left to right.

Programmatic Use

• Use get_param(gcb,'InputRange') to view the current value of Input range.
• Use set_param(gcb,'InputRange',value) to set Input range to a specific value.

Hold off time (s) — Delays measurement analysis to avoid corruption by transients
0 (default) | nonnegative real scalar

Delays measurement analysis to avoid corruption by transients, specified as a nonnegative real scalar
in seconds.

Programmatic Use

• Use get_param(gcb,'HoldOffTime') to view the current value of Hold off time.
• Use set_param(gcb,'HoldOffTime',value) to set Hold off time to a specific value.

Recommended min. simulation stop time (s) — Minimum time simulation must run for meaningful
result
6.4e-5 (default) | positive real scalar

Minimum time the simulation must run to obtain meaningful results, specified as a positive real
scalar in seconds.

 ADC DC Measurement

1-41

For DC measurement, the simulation must run so that ADC can sample each digital code 10 times
with the default error tolerance of 0.1, assuming a ramp input that traverses the full scale range of
the ADC over the period of simulation. Based on this assumption, the analog input frequency (fanalog),
generated by the ADC Testbench block for the sawtooth waveform is set as:

fanalog = StartFreq · ErrorTolerance
2(Nbits + 1)

where StartFreq is the frequency of the conversion start clock and Nbits is the resolution of the ADC.

So, the Recommended min. simulation stop time (s) (T) is calculated by using the formula:
T = 1

fanalog
+ HoldOf fTime.

Data Types: double

Set as model stop time — Automatically set recommended min. simulation stop time as model stop
time
button

Click to automatically set the Recommended min. simulation stop time (s) as the stop time of the
Simulink model.

Endpoint — Measure DNL, INL using endpoint method
on (default) | off

Measure the differential nonlinearity (DNL) error and integral nonlinearity (INL) error using the
endpoint method. This method uses the end points of the actual transfer function to measure the DNL
and INL error.

Best fit — Measure DNL, INL using best fit method
on (default) | off

Measure the differential nonlinearity (DNL) error and integral nonlinearity (INL) error using the best
fit method. This method uses a standard curve fitting technique to find the best fit to measure the
DNL and INL error.

Output result to base workspace — Store detailed test results to base workspace
off (default) | on

Store detailed test results to a struct in the base workspace for further processing. By default, this
option is not selected.

Workspace variable name — Name of the variable that stores detailed test results
adc_dc_out (default) | character string

Name of the variable that stores detailed test results, specified as a character string.

Dependencies

This parameter is only available when Output result to base workspace is selected

Programmatic Use

• Use get_param(gcb,'VariableName') to view the current value of Workspace variable
name.

1 Blocks: Data Converters

1-42

• Use set_param(gcb,'VariableName',value) to set Workspace variable name to a specific
value.

Plot — Plot measurement results
button

Click to plot measurement result for further analysis.

More About
Offset Error

Offset error represents the offset of the ADC transfer function curve from it ideal value at a single
point.

Gain Error

Gain error represents the deviation of the slope of the ADC transfer function curve from its ideal
value.

INL Error

Integral nonlinearity (INL) error, also termed as relative accuracy, is the maximum deviation of the
measured transfer function from a straight line. The straight line is can be a best fit using standard
curve fitting technique, or drawn between the end points of the actual transfer function after gain
adjustment.

The best fit method gives a better prediction of distortion in AC applications, and a lower value of
linearity error. The endpoint method is mostly used in measurement application of data converters,
since the error budget depends on the actual deviation from ideal transfer function.

DNL Error

Differential nonlinearity (DNL) is the deviation from the ideal difference (1 LSB) between analog
input levels that trigger any two successive digital output levels. The DNL error is the maximum
value of DNL found at any transition.

Version History
Introduced in R2019a

See Also
SAR ADC | Flash ADC | ADC Testbench | ADC AC Measurement

Topics
“Measuring Offset and Gain Errors in ADC”

 ADC DC Measurement

1-43

Aperture Jitter Measurement
Measure aperture jitter of periodic signals

Libraries:
Mixed-Signal Blockset / ADC / Measurements & Testbenches

Description
The Aperture Jitter Measurement measure the aperture jitter of periodic signals. In practical data
converters, there is a delay between the sampling edge of the sample clock signal and when the
sample is actually taken. This delay is known as aperture delay. Aperture jitter is the sample to
sample variation between aperture delay.

Ports
Input

clk — Clock signal input
scalar

Clock signal input, specified as a scalar in volts.
Data Types: double

Output

jitter — Jitter output
scalar

Aperture jitter output, returned as a scalar in seconds.
Data Types: double

Parameters
Frequency — Input clock frequency
1e6 (default) | real positive scalar

Input clock frequency, specified as a real positive scalar in Hz.
Programmatic Use

• Use get_param(gcb,'Frequency') to view the current value of Frequency.
• Use set_param(gcb,'Frequency',value) to set Frequency to a specific value.

Recommended min. simulation stop time — Minimum time the simulation must run for meaningful
result
9.901e-05 (default) | scalar

1 Blocks: Data Converters

1-44

Minimum time the simulation must run for meaningful result, specified as a scalar in seconds. This is
calculated using the JEDEC Standards for measuring aperture jitter.

Signal range

Min — Minimum value of clock signal
0 (default) | real scalar

Minimum value of clock signal, specified as a real scalar in volts.

Programmatic Use

• Use get_param(gcb,'InputMin') to view the current value of Min.
• Use set_param(gcb,'InputMin',value) to set Min to a specific value.

Max — Maximum value of clock signal
1 (default) | real scalar

Maximum value of clock signal, specified as a real scalar in volts.

Programmatic Use

• Use get_param(gcb,'InputMax') to view the current value of Max.
• Use set_param(gcb,'InputMax',value) to set Max to a specific value.

Hold off time (s) — Delay before measurement analysis
0 (default) | nonnegative real scalar

Delays measurement analysis to avoid corruption by transients, specified as a nonnegative real scalar
in seconds.

Programmatic Use

• Use get_param(gcb,'HoldOffTime') to view the current value of Hold off time (s).
• Use set_param(gcb,'HoldOffTime',value) to set Hold off time (s) to a specific value.

Data Types: double

Version History
Introduced in R2019a

See Also
Flash ADC | SAR ADC

External Websites
https://www.jedec.org/

 Aperture Jitter Measurement

1-45

https://www.jedec.org/

DAC AC Measurement
Measure AC performance metrics of DAC output

Libraries:
Mixed-Signal Blockset / DAC / Measurements & Testbenches

Description
The DAC AC Measurement block measures DAC AC performance metrics such as signal-to-noise ratio
(SNR), signal to noise and distortion radio (SINAD), spurious-free dynamic range (SFDR), effective
number of bits (ENOB), and noise floor. You can use DAC AC Measurement block to validate the DAC
architecture models provided in Mixed-Signal Blockset, or you can use a DAC of your own
implementation

Ports
Input

digital — Digital input signal from DAC
scalar

Digital input signal from a DAC, specified as a scalar.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

analog — Converted analog signal from DAC
scalar

Converted analog signal from a DAC, specified as a scalar.
Data Types: double

start — External clock to start conversion
scalar

External clock to start conversion, specified as a scalar. This port determines when digital-to-analog
conversion process starts.
Data Types: double

Parameters
Digital signal frequency (Hz) — Frequency of digital input signal to DAC
1e3 (default) | positive real scalar

Frequency of the digital input signal to the DAC block, specified as a positive real scalar in hertz.
Digital signal frequency (Hz) must match the input frequency of the DAC device under test.

1 Blocks: Data Converters

1-46

Digital input frequency (Hz) needs to satisfy two requirements:

• All the output codes of the DAC must be activated.
• The Digital signal frequency (Hz) must not share any common multiples other than 1 with the

Conversion start frequency (Hz).

Programmatic Use
Block parameter: InputFrequency
Type: character vector
Values: positive real scalar
Default: 1e3
Data Types: double

Start conversion frequency (Hz) — Frequency of internal start conversion clock
1e6 (default) | positive real scalar

Frequency of the internal start conversion clock, specified as a real scalar in Hz. The Start
conversion frequency parameter determines the conversion rate at the start of conversion.
Programmatic Use
Block parameter: StartFreq
Type: character vector
Values: positive real scalar
Default: 1e6
Data Types: double

Settling time tolerance (LSB) — Tolerance for calculating settling time
0.5 (default) | positive real scalar

The tolerance allowed for calculating settling time, specified as a positive real scalar in LSB. The
output of the DAC must settle within the Settling time tolerance (LSB) by Settling time (s).
Programmatic Use
Block parameter: SettlingTimeTolerance
Type: character vector
Values: positive real scalar
Default: 0.5
Data Types: double

Hold off time (s) — Delay before measurement analysis to avoid corruption by transients
0 (default) | nonnegative real scalar

Delay before measurement analysis to avoid corruption by transients, specified as a nonnegative real
scalar in seconds.
Programmatic Use
Block parameter: HoldOffTime
Type: character vector
Values: nonnegative real scalar
Default: 0

Recommended simulation stop time (s) — Minimum time simulation must run for meaningful
result
0.09 (default) | positive real scalar

 DAC AC Measurement

1-47

Minimum time the simulation must run to obtain meaningful results, specified as a positive real
scalar in seconds.

To measure AC performance, the simulation must run so that the DAC can generate six spectral
updates of the DAC output. So, the Recommended simulation stop time (s) T is given by [1]:

T = 6 1.5
RBW + Hold off time ,

where RBW is the resolution bandwidth of the spectrum estimator inside the DAC Testbench block
and is given by the equation: RBW = min Input frequency 0.1 .

This parameter is only reported by the block and is not editable.
Data Types: double

Output result to base workspace — Store detailed test results to base workspace
off (default) | on

Store detailed test results to a struct in the base workspace for further processing at the end of
simulation. By default, this parameter is deselected.

Workspace variable name — Name of the variable that stores detailed test results
dac_ac_out (default) | character string

Name of the variable that stores detailed test results, specified as a character string.

Dependencies

To enable this parameter, select Output result to base workspace parameter.

Programmatic Use
Block parameter: VariableName
Type: character vector
Values: character string
Default: dac_ac_out

Show spectrum analyzer during simulation — Displays Spectrum Analyzer during simulation
on (default) | off

Select this parameter to display the Spectrum Analyzer window during simulation. By default, this
parameter is selected.

More About
SNR

Signal-to-noise ratio or SNR is the ratio of the RMS (root-mean-square) signal amplitude to the mean
value of the root-sum-squares (RSS) of all other spectral components, excluding the DC and first five
harmonics.

SINAD

Signal to noise and distortion ratio or SINAD is the ratio of the RMS signal amplitude to the mean
value of the root-sum-squares of all other spectral components and harmonics, excluding DC.

1 Blocks: Data Converters

1-48

SFDR

Spurious free dynamic range or SFDR is the ratio of the RMS signal amplitude to the RMS value of
the peak spurious content, measured over the entire first Nyquist zone (DC to half of sampling
frequency).

ENOB

Effective number of bits or ENOB represents the actual resolution of a DAC after considering internal
noise and errors. It is given by ENOB = SINAD−1.76

6.02 .

Version History
Introduced in R2020a

See Also
DAC DC measurement | Binary Weighted DAC | DAC Testbench

 DAC AC Measurement

1-49

DAC DC Measurement
Measure DC performance metrics of DAC output

Libraries:
Mixed-Signal Blockset / DAC / Measurements & Testbenches

Description
The DAC DC Measurement block measures DAC DC performance metrics such as offset error, gain
error, integral nonlinearity (INL), and differential nonlinearity (DNL) errors. You can use the DAC DC
Measurement block to validate the DAC architecture models provided in Mixed-Signal Blockset, or
you can use a DAC of your own implementation.

Ports
Input

digital — Digital input signal from DAC
scalar

Digital signal from a DAC, specified as a scalar.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

analog — Converted analog signal from DAC
scalar

Converted analog signal from a DAC, specified as a scalar.
Data Types: double

start — External clock to start conversion
scalar

External clock to start conversion, specified as a scalar. This port determines when digital-to-analog
conversion process starts.
Data Types: double

Parameters
Input polarity — Polarity of input signal to DAC
Bipolar (default) | Unipolar

Polarity of the input signal to the DAC.

Programmatic Use
Block parameter: Polarity

1 Blocks: Data Converters

1-50

Type: character vector
Values: Bipolar|Unipolar
Default: Bipolar

Reference (V) — Reference voltage
2 (default) | real scalar

Reference voltage of the DAC, specified as a real scalar in volts. Reference (V) helps determine the
output from the input digital code, Number of bits, and Bias (V) using the equation:

DAC output = Digital input code
2Number of bits Reference + Bias.

Programmatic Use
Block parameter: Ref
Type: character vector
Values: real scalar
Default: 2
Data Types: double

Bias (V) — Bias voltage added to output
0 (default) | real scalar

Bias voltage added to the output of the DAC, specified as a real scalar in volts. Bias (V) helps
determine the output from the input digital code, Number of bits, and Reference (V) using the
equation:

DAC output = Digital input code
2Number of bits Reference + Bias.

Programmatic Use
Block parameter: Bias
Type: character vector
Values: real scalar
Default: 0
Data Types: double

Settling time (s) — Time required for output to settle
3e-7 (default) | nonnegative real scalar

The time required for the output of the DAC to settle to within some fraction of its final value,
specified as a nonnegative real scalar in seconds.

Programmatic Use
Block parameter: SettlingTime
Type: character vector
Values: real scalar
Default: 3e-7
Data Types: double

Hold off time (s) — Delay before measurement analysis
1e-3 (default) | nonnegative real scalar

 DAC DC Measurement

1-51

Delay before measurement analysis to avoid corruption by transients, specified as a nonnegative real
scalar in seconds.

Programmatic Use
Block parameter: HoldOffTime
Type: character vector
Values: nonnegative real scalar
Default: 1e-3
Data Types: double

Number of bits — Number of bits in input word
10 (default) | positive real integer

Number of bits in the input word, specified as a unitless positive real integer. Number of bits
determines the resolution of the DAC.

Programmatic Use
Block parameter: NBits
Type: character vector
Values: positive real integer
Default: 10
Data Types: double

Start conversion frequency (Hz) — Frequency of internal start conversion clock
1e6 (default) | positive real scalar

Frequency of the internal start conversion clock, specified as a real scalar in Hz. The Start
conversion frequency parameter determines the conversion rate at the start of conversion.

Programmatic Use
Block parameter: StartFreq
Type: character vector
Values: positive real scalar
Default: 1e6
Data Types: double

Recommended simulation stop time (s) — Minimum time simulation must run for meaningful
result
0.02148 (default) | positive real scalar

Minimum time the simulation must run to obtain meaningful results, specified as a positive real
scalar in seconds.

To measure DC performance, the simulation must run so that the DAC can sample each digital code
20 times. Based on this assumption, the Recommended simulation stop time (s) T is given by:

T = Samples per bit
StartFreq/2Nbits + 1 + Hold off time,

where StartFreq is the frequency of the conversion start clock and Nbits is the resolution of the DAC.

The number of samples per bit is calculated using the equation:

1 Blocks: Data Converters

1-52

Samples per bit = max 1
Error tolerance, 10 .

This parameter is only reported by the block and is not editable.
Data Types: double

Endpoint — Measure DNL, INL using endpoint method
on (default) | off

Measure the differential nonlinearity (DNL) error and integral nonlinearity (INL) error using the
endpoint method. This method uses the endpoints of the actual transfer function to measure the DNL
and INL errors.

Best fit — Measure DNL, INL using best fit method
on (default) | off

Measure the differential nonlinearity (DNL) error and integral nonlinearity (INL) error using the best
fit method. This method uses a standard curve-fitting technique to find the best fit to measure the
DNL and INL errors.

Output result to base workspace — Store detailed test results to base workspace
off (default) | on

Select to store detailed test results to a struct in the base workspace for further processing at the
end of simulation. By default, this parameter is deselected.

Workspace variable name — Name of the variable that stores detailed test results
dac_dc_out (default) | character string

Name of the variable that stores detailed test results, specified as a character string.

Dependencies

To enable this parameter, select Output result to base workspace parameter.

Programmatic Use
Block parameter: VariableName
Type: character vector
Values: character string
Default: dac_dc_out

Plot — Plot measurement results
button

Click to plot measurement result for further analysis.

More About
Offset Error

Offset error represents the offset of the DAC transfer function curve from it ideal value at a single
point.

 DAC DC Measurement

1-53

Gain Error

Gain error represents the deviation of the slope of the DAC transfer function curve from its ideal
value.

INL Error

Integral nonlinearity (INL) error, also termed as relative accuracy, is the maximum deviation of the
measured transfer function from a straight line. The straight line can either be a best fit using
standard-curve fitting technique, or be drawn between the endpoints of the actual transfer function
after gain adjustment.

The best fit method gives a better prediction of distortion in AC applications, and a lower value of
linearity error. The endpoint method is mostly used in the measurement applications of data
converters, since the error budget depends on actual deviation from the ideal transfer function.

DNL Error

Differential nonlinearity (DNL) is the deviation from the ideal difference (1 LSB) between analog
input levels that trigger any two successive digital output levels. The DNL error is the maximum
value of DNL found at any transition.

Version History
Introduced in R2020a

See Also
Binary Weighted DAC | DAC AC measurement | DAC Testbench

1 Blocks: Data Converters

1-54

ADC Testbench
Measures DC and AC performance metrics of ADC output

Libraries:
Mixed-Signal Blockset / ADC / Measurements & Testbenches

Description
The ADC Testbench block measures both DC and AC performance metrics. DC performance metrics
include offset error and gain error. AC performance metrics include signal to noise ratio (SNR), signal
to noise and distortion radio (SINAD), spurious free dynamic range (SFDR), effective number of bits
(ENOB), noise floor, and conversion delay.

The ADC Testbench block generates the stimulus to drive the device under test (DUT) from the
Stimulus tab. The setup parameters for validating the DUT are defined in the Setup tab and the
target validation metrics are defined in the Target Metric tab.

You can use the ADC Testbench block to validate the ADC architectural models provided in Mixed-
Signal Blockset, or you can validate an ADC of your own implementation.

Ports
Input

from adc digital — Digital signal from ADC output
scalar

Digital input signal from the ADC output, specified as a scalar.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

from adc ready — Conversion ready signal from ADC output
scalar

Conversion ready signal from the ADC output, specified as a scalar. This signal indicates when the
ADC conversion process is complete.
Data Types: double

Output

to adc analog — Analog stimulus signal for ADC input
scalar

Analog output stimulus signal for the ADC input, returned as a scalar.
Data Types: double

 ADC Testbench

1-55

to adc start — External start conversion clock for ADC
scalar

External start conversion clock for ADC, returned as a scalar. The rising edge of this signal starts the
conversion process in ADC block.
Data Types: double

Parameters
Measurement — Select whether to measure DC or AC performance metrics
DC (default) | AC

Select whether to measure static (DC) or dynamic (AC) performance metrics.

• Select DC to measure offset error and gain error.
• Select AC to measure SNR, SINAD, SFDR, ENOB, noise floor, and conversion delay.

Recommended min. simulation stop time (s) — Minimum time simulation must run for meaningful
result
2.048e-02 (default) | positive real scalar

Minimum time for which the simulation must run to obtain meaningful results, specified as a positive
real scalar in seconds.

• To measure DC performance, the simulation must run so that ADC can sample each digital code
10 times, assuming a ramp input that traverses the full scale range of the ADC over the period of
simulation. Based on this assumption and considering that the maximum allowed error tolerance
is 0.1, the analog input frequency (fanalog), generated by the ADC Testbench block for the sawtooth
waveform is set as:

fanalog = StartFreq · min(ErrorTolerance, 0.1)
2(Nbits + 1)

where StartFreq is the frequency of the conversion start clock and Nbits is the resolution of the
ADC.

So, the Recommended min. simulation stop time (s) T is calculated by using the formula:
T = 1

fanalog
+ HoldOf fTime.

• To measure AC performance, the simulation must run so that the ADC can generate 6 spectral
updates of the ADC output. The time to generate one spectral output based on Welch's method [1]
on page 1-39 is given by:

t = 1.5 · SamplingFrequency
RBW

where SamplingFrequency and RBW are the sampling frequency and resolution bandwidth of the
spectrum estimator inside the ADC Testbench block.

This parameter is only reported by the testbench and is not editable.
Data Types: double

1 Blocks: Data Converters

1-56

Set as model stop time — Automatically set recommended min. simulation stop time as model stop
time
button

Click to automatically set the Recommended min. simulation stop time (s) as the stop time of the
Simulink model.

Endpoint — Measure DNL, INL using endpoint method
on (default) | off

Measure the differential nonlinearity (DNL) error and integral nonlinearity (INL) error using the
endpoint method. This method uses the end points of the actual transfer function to measure the DNL
and INL error.

Best fit — Measure DNL, INL using best fit method
on (default) | off

Measure the differential nonlinearity (DNL) error and integral nonlinearity (INL) error using the best
fit method. This method uses a standard curve fitting technique to find the best fit to measure the
DNL and INL error.

Plot DC analysis result — Plot DC analysis results
button

Click to plot DC analysis result for further analysis. To perform a complete DC analysis including
integral nonlinearity (INL) and differential nonlinearity (DNL), use the ADC DC Measurement block.
Dependencies

This parameter is only available when Measurement option is set to DC.

Export measurement result — Store detailed test results to base workspace
button

Click to store detailed test results to a spreadsheet (XLS file) or as comma-separated values (CSV file)
for further processing.

Stimulus

Distortion measurement type — Type of distortion to measure
Harmonic (default) | Intermodulation

Type of distortion the ADC Testbench block is set to measure, specified as Harmonic or
Intermodulation.
Dependencies

To enable this parameter, set Measurement option as AC.
Programmatic Use
Block parameter: DistortionMeasurement
Type: character vector
Values: Harmonic | Intermodulation
Default: Harmonic

Analog stimulus frequency (Hz) — Frequency of the analog input signal to ADC
positive real scalar | positive real valued vector

 ADC Testbench

1-57

Frequency of the analog input signal to an ADC block, specified as a positive real scalar in hertz.
Analog stimulus frequency must match the input frequency to the ADC device under test. By
default, this parameter is calculated automatically. You can deselect Set automatically to customize
the value.

• When the ADC Testbench is set to measure the Harmonic distortion, the default value of Analog
stimulus frequency is 976.563.

• When the ADC Testbench is set to measure the Intermodulation distortion, the default value of
Analog stimulus frequency is [878.907,1074.22].

Analog stimulus frequency needs to satisfy two requirements:

• All the output codes of the ADC must be activated.
• The Analog stimulus frequency must not share any common multiples other than 1 with the

Start conversion frequency.

To satisfy both the conditions, use the equation fanalog = J
M fstart [2],

where:

fanalog is the analog signal frequency,

fstart is the start conversion frequency,

M > 2Nbits · π, where Nbits is the number of bits of the ADC,

and J is an integer with no common factors with M.

Dependencies

To enable this parameter, set Measurement option as AC.

Programmatic Use
Block parameter: InputFrequency
Type: character vector
Values: positive real scalar | positive real valued vector
Default: 976.563

Resolution bandwidth (Hz) — Resolution bandwidth
positive real scalar

Resolution bandwidth, specified as a positive real scalar in hertz. This parameter defines the smallest
positive frequency that can be resolved. By default, this parameter is calculated automatically. You
can deselect Set automatically to customize the value.

• When the ADC AC Measurement is set to measure the Harmonic distortion, the default value of
Resolution bandwidth (Hz) is 97.6563.

• When the ADC AC Measurement is set to measure the Intermodulation distortion, the default
value of Resolution bandwidth (Hz) is 87.8907.

Dependencies

To enable this parameter, set Measurement option as AC.

1 Blocks: Data Converters

1-58

Programmatic Use
Block parameter: RBW
Type: character vector
Values: positive real scalar
Default: 97.6563

Start conversion frequency (Hz) — Frequency of the start conversion clock of the ADC
1e6 (default) | positive real scalar

Frequency of the start conversion clock of the ADC, specified as a positive real scalar in Hz. Start
conversion frequency (Hz) must match the frequency of the start conversion clock of the ADC
block.
Programmatic Use
Block parameter: StartFreq
Type: character vector
Values: positive real scalar
Default: 1e6
Data Types: double

RMS aperture jitter (s) — RMS aperture jitter to be added by the start conversion clock
40e-12 (default) | positive real scalar

RMS aperture jitter to be added by the start conversion clock, specified as a positive real scalar in
seconds.
Programmatic Use
Block parameter: RMSJitt
Type: character vector
Values: positive real scalar
Default: 40e-12
Data Types: double

Error tolerance (LSB) — Maximum difference between successive samples of analog signal
0.1 (default) | positive scalar in the range (0, 1]

Maximum allowed difference in the amplitude of the successive samples of the analog input signal,
specified as positive real scalar in least significant bit (LSB).
Dependencies

To enable this parameter, set Measurement option as DC.
Data Types: double

Setup

Autofill setup parameter — Automatically propagate setup parameters from ADC
button

Click to automatically propagate setup parameters from the ADC.
Dependencies

This parameter only works when the ADC is a Flash ADC or a SAR ADC from the Mixed-Signal
Blockset.

 ADC Testbench

1-59

Number of bits — Number of physical output bits
10 (default) | positive real integer in the range [1, 26]

Number of physical output bits, specified as a unitless positive real integer in the range [1, 26].
Number of bits determines the resolution of the ADC.
Programmatic Use

• Use get_param(gcb,'NBits') to view the current Number of bits.
• Use set_param(gcb,'NBits',value) to set Number of bits to a specific value.

Data Types: double

Input range (V) — ADC dynamic range
[-1 1] (default) | 2-element row vector

ADC dynamic range, specified as a 2-element row vector in volts.
Programmatic Use

• Use get_param(gcb,'InputRange') to view the current Input range (V).
• Use set_param(gcb,'InputRange',value) to set Input range (V) to a specific value.

Data Types: double

Hold off time (s) — Delay before measurement analysis
0 (default) | nonnegative real scalar

Delays measurement analysis to avoid corruption by transients, specified as a nonnegative real scalar
in seconds.
Programmatic Use
Block parameter: HoldOffTime
Type: character vector
Values: nonnegative real scalar
Default: 0
Data Types: double

Show spectrum analyzer during simulation — Displays spectrum analyzer during simulation
off (default) | on

Displays spectrum analyzer during simulation. By default, this option is deselected.
Dependencies

This parameter is only available when Measurement option is set to AC.

Enable increased buffer size — Enable increased buffer size
off (default) | on

Select to enable increased buffer size during simulation. By default, this option is deselected.

Buffer size — Number of samples of the input buffering available during simulation
5 (default) | positive integer scalar

Number of samples of the input buffering available during simulation, specified as a positive integer
scalar.

1 Blocks: Data Converters

1-60

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value that the
input buffer contains all the input samples required.

Dependencies

This parameter is only available when Enable increased buffer size option is selected in the
Configuration tab.

Programmatic Use
Block parameter: NBuffer
Type: character vector
Values: positive integer scalar
Default: 5
Data Types: double

Target Metric

Autofill target metric — Automatically propagate target metrics from ADC
button

Click to automatically propagate target metrics from ADC.

Dependencies

• To enable this parameter, set Measurement option to DC.
• This parameter only works when the ADC is a Flash ADC or a SAR ADC from the Mixed-Signal

Blockset.

Offset error — Shifts quantization steps by specific value
1.5 LSB (default) | real scalar

Shifts quantization steps by specific value, specified as a positive real scalar in %FS, FS, or LSB.

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is
0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

Dependencies

To enable this parameter, set Measurement option to DC.

Programmatic Use
Block parameter: TargetOffsetError
Type: character vector
Values: real scalar
Default: 1.5 LSB
Data Types: double

 ADC Testbench

1-61

Gain error — Error on the slope of ADC transfer curve
1 LSB (default) | real scalar

Error on the slope of the straight line interpolating ADC transfer curve, specified as a positive real
scalar in least significant bit %FS, FS, or LSB.

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is
0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

Dependencies

To enable this parameter, set Measurement option to DC.

Programmatic Use
Block parameter: TargetGainError
Type: character vector
Values: real scalar
Default: 1 LSB
Data Types: double

Version History
Introduced in R2019a

References
[1] Spectrum Analyzer

[2] IEEE Std 1241-2010. "IEEE Standard for Terminology and Test Methods for Analog-to-Digital
Converters," pp. 29-30, 14 January 2011.

See Also
ADC DC Measurement | ADC AC Measurement | Flash ADC | SAR ADC

1 Blocks: Data Converters

1-62

DAC Testbench
Measure DC and AC performance metrics of DAC output

Libraries:
Mixed-Signal Blockset / DAC / Measurements & Testbenches

Description
The DAC Testbench block measures both DC and AC performance metrics of a DAC (digital to analog
converter). DC performance metrics include offset error and gain error. AC performance metrics
include signal-to-noise ratio (SNR), signal to noise and distortion radio (SINAD), spurious-free
dynamic range (SFDR), effective number of bits (ENOB), and noise floor.

The DAC Testbench block generates the stimulus to drive the device under test (DUT) from the
Stimulus tab. The setup parameters for validating the DUT are defined on the Setup tab. The target
validation metrics are defined on the Target Metric tab.

You can use the DAC Testbench block to validate the DAC architecture models provided in Mixed-
Signal Blockset, or you can validate a DAC of your own implementation.

Ports
Input

from dac analog — Analog signal from DAC output
scalar

Analog input signal from the DAC output, specified as a scalar.
Data Types: double

Output

to dac digital — Digital stimulus signal for DAC input
scalar

Digital output stimulus signal for the DAC input, returned as a scalar.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

to dac start — External start conversion clock for DAC
scalar

External start conversion clock for DAC, returned as a scalar. The rising edge of this signal starts the
conversion process in the DAC block.
Data Types: double

 DAC Testbench

1-63

Parameters
Measurement — Select whether to measure DC or AC performance metrics
DC (default) | AC

Select whether to measure static (DC) or dynamic (AC) performance metrics:

• Select DC to measure offset error and gain error.
• Select AC to measure SNR, SINAD, SFDR, ENOB, and noise floor.

Recommended min. simulation stop time (s) — Minimum time simulation must run for meaningful
result
2.048e-02 (default) | positive real scalar

Minimum time for which the simulation must run to obtain meaningful results, specified as a positive
real scalar in seconds.

• To measure DC performance, the simulation must run so that the DAC can sample each digital
code 20 times. Based on this assumption, the Recommended min. simulation stop time (s) T is
given by:

T = Samples per bit
StartFreq/2Nbits + 1 + Hold off time,

where StartFreq is the frequency of the conversion-start clock and Nbits is the resolution of the
DAC.

The number of samples per bit is calculated using the equation:

Samples per bit = max 1
Error tolerance, 10 .

• To measure AC performance, the simulation must run so that the DAC can generate six spectral
updates of the DAC output. So, the Recommended min. simulation stop time (s) T is given by
[1]:

T = 6 1.5
RBW + Hold off time ,

where RBW is the resolution bandwidth of the spectrum estimator inside the DAC Testbench block
and is given by the equation: RBW = min Input frequency 0.1 .

This parameter is only reported by the testbench and is not editable.
Data Types: double

Set as model stop time — Automatically set recommended min. simulation stop time as model stop
time
button

Click to automatically set the Recommended min. simulation stop time (s) as the stop time of the
Simulink model.

Endpoint — Measure DNL, INL using endpoint method
on (default) | off

1 Blocks: Data Converters

1-64

Measure the differential nonlinearity (DNL) error and integral nonlinearity (INL) error using the
endpoint method. This method uses the endpoints of the actual transfer function to measure the DNL
and INL errors.

Dependencies

To enable this parameter, set Measurement to DC.

Best fit — Measure DNL, INL using best fit method
on (default) | off

Measure the differential nonlinearity (DNL) error and integral nonlinearity (INL) error using the best
fit method. This method uses a standard curve-fitting technique to find the best fit to measure the
DNL and INL errors.

Dependencies

To enable this parameter, set Measurement to DC.

Plot DC analysis result — Plot DC analysis result
button

Click to plot DC analysis result for further analysis. To perform a complete DC analysis including
integral nonlinearity (INL) and differential nonlinearity (DNL), use the DAC DC Measurement block.

Dependencies

To enable this parameter, set Measurement to DC.

Export measurement result — Store detailed test results to base workspace
button

Click to store detailed test results to a spreadsheet (XLS file) or as comma-separated values (CSV file)
for further processing.

Stimulus

Digital input frequency (Hz) — Frequency of digital input signal to DAC
1e4 (default) | positive real scalar

Frequency of the digital input signal to the DAC block, specified as a positive real scalar in hertz.
Digital input frequency (Hz) must match the input frequency of the DAC device under test.

Digital input frequency (Hz) needs to satisfy two requirements:

• All the output codes of the DAC must be activated.
• The Digital input frequency (Hz) must not share any common multiples other than 1 with the

Start conversion frequency (Hz).

Dependencies

To enable this parameter, set Measurement to AC.

Programmatic Use
Block parameter: InputFrequency
Type: character vector

 DAC Testbench

1-65

Values: positive real scalar
Default: 1e3
Data Types: double

Start conversion frequency (Hz) — Frequency of internal start-conversion clock
1e6 (default) | positive real scalar

Frequency of internal start-conversion clock, specified as a positive real scalar in Hz. Start
conversion frequency (Hz) determines the rate of the DAC.

Programmatic Use
Block parameter: StartFreq
Type: character vector
Values: positive real scalar
Default: 1e6
Data Types: double

Error tolerance (LSB) — Maximum difference between successive samples of digital signal
0.1 (default) | positive scalar in the range (0, 1]

Maximum allowed difference in the amplitude of successive samples of the digital input signal,
specified as a positive real scalar in least significant bit (LSB).

Dependencies

To enable this parameter, set Measurement to DC.

Programmatic Use
Block parameter: ErrorTolerance
Type: character vector
Values: positive scalar in the range (0, 1]
Default: 0.1
Data Types: double

Setup

Autofill setup parameters — Automatically propagate setup parameters from DAC
button

Click to automatically propagate setup parameters from the DAC.

Dependencies

The DAC must be a Binary Weighted DAC from the Mixed-Signal Blockset.

Number of bits — Number of bits in input word
10 (default) | positive real integer

Number of bits in the input word, specified as a unitless positive real integer. Number of bits
determines the resolution of the DAC.

Programmatic Use
Block parameter: NBits
Type: character vector
Values: positive real integer

1 Blocks: Data Converters

1-66

Default: 10
Data Types: double

Input polarity — Polarity of input signal to DAC
Bipolar (default) | Unipolar

Polarity of the input signal to the DAC.

Programmatic Use
Block parameter: Polarity
Type: character vector
Values: Bipolar|Unipolar
Default: Bipolar

Reference (V) — Reference voltage
1 (default) | real scalar

Reference voltage of the DAC, specified as a real scalar in volts. Reference (V) helps determine the
output from the input digital code, Number of bits, and Bias (V) using the equation:

DAC output = Digital input code
2Number of bits Reference + Bias.

Dependencies

To enable this parameter, set Measurement to DC.

Programmatic Use
Block parameter: Ref
Type: character vector
Values: real scalar
Default: 1
Data Types: double

Bias (V) — Bias voltage added to output
0 (default) | real scalar

Bias voltage added to the output of the DAC, specified as a real scalar in volts. Bias (V) helps
determine the output from the input digital code, Number of bits, and Reference (V) using the
equation:

DAC output = Digital input code
2Number of bits Reference + Bias

Dependencies

To enable this parameter, set Measurement to DC.

Programmatic Use
Block parameter: Bias
Type: character vector
Values: real scalar
Default: 0
Data Types: double

 DAC Testbench

1-67

Settling time (s) — Time required for output to settle
0.25/1e-6 (default) | nonnegative real scalar

The time required for the output of the DAC to settle to within some fraction of its final value,
specified as a nonnegative real scalar in seconds.

Dependencies

To enable this parameter, set Measurement to DC.

Programmatic Use
Block parameter: SettlingTime
Type: character vector
Values: real scalar
Default: 0.25/1e-6
Data Types: double

Settling time tolerance (LSB) — Tolerance for calculating settling time
0.5 (default) | positive real scalar

The tolerance allowed for calculating settling time, specified as a positive real scalar in LSB. The
output of the DAC must settle within the Settling time tolerance (LSB) by Settling time (s).
Dependencies

To enable this parameter, set Measurement to AC.

Programmatic Use
Block parameter: SettlingTimeTolerance
Type: character vector
Values: positive real scalar
Default: 0.5
Data Types: double

Hold off time (s) — Delay before measurement analysis
0 (default) | nonnegative real scalar

Delay before measurement analysis to avoid corruption by transients, specified as a nonnegative real
scalar in seconds.

Programmatic Use

• Use get_param(gcb,'HoldOffTime') to view the current value of Hold off time (s).
• Use set_param(gcb,'HoldOffTime',value) to set Hold off time (s) to a specific value.

Data Types: double

Show spectrum analyzer during simulation — Displays Spectrum Analyzer during simulation
off (default) | on

Select this parameter to display the Spectrum Analyzer window during simulation. By default, this
parameter is deselected.

Dependencies

To enable this parameter, set Measurement to AC.

1 Blocks: Data Converters

1-68

Target Metric

Autofill target metric — Automatically propagate target metrics from DAC
button

Click to automatically propagate target metrics from the DAC.
Dependencies

• To enable this parameter, set Measurement to DC.
• The DAC must be a Binary Weighted DAC from the Mixed-Signal Blockset.

Offset error — Shifts quantization steps by specific value
0 LSB (default) | real scalar

Shifts quantization steps by a specific value, specified as a real scalar in %FS (percentage of full
scale), FS (full scale), or LSB (least significant bit).

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is
0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

Dependencies

To enable this parameter, set Measurement to DC.
Programmatic Use
Block parameter: TargetOffsetError
Type: character vector
Values: real scalar
Default: 0 LSB
Data Types: double

Gain error — Error in slope of DAC transfer curve
0 LSB (default) | real scalar

Error in the slope of the straight line interpolating the DAC transfer curve, specified as a real scalar
in %FS (percentage of full scale), FS (full scale), or LSB (least significant bit).

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is
0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

 DAC Testbench

1-69

Dependencies

To enable this parameter, set Measurement to DC.

Programmatic Use

Programmatic Use
Block parameter: TargetGainError
Type: character vector
Values: real scalar
Default: 0 LSB
Data Types: double

Version History
Introduced in R2020a

References
[1] Spectrum Analyzer

See Also
Binary Weighted DAC | DAC AC measurement | DAC DC measurement

1 Blocks: Data Converters

1-70

Blocks: PLL

2

Charge Pump
Output a current proportional to the difference in duty cycle between two input ports

Libraries:
Mixed-Signal Blockset / PLL / Building Blocks

Description
The Charge Pump block produces an output current which is proportional to the difference in duty
cycles between the signals at its up and down input ports. In a phase-locked loop (PLL) system, the
Charge Pump block converts the phase error as represented by the two outputs of the PFD block into
a single current at the input to the Loop Filter.

Ports
Input

up — Input port
scalar

Input port, connected to the up output of a PFD in a PLL system.
Data Types: double

down — Input port
scalar

Input port, connected to the down output of PFD in a PLL system.
Data Types: double

Output

out — Output port
scalar

Output port, connected to the Loop Filter block in a PLL system. out delivers current proportional to
the difference in duty cycles between up and down input ports.
Data Types: double

Parameters
Configuration

Output current (A) — Design output current
1e-3 (default) | positive real scalar

Full scale magnitude of design output current, specified as a positive real scalar in amperes.

2 Blocks: PLL

2-2

Programmatic Use

• Use get_param(gcb,'OutputCurrent') to view the current value of Output current (A).
• Use set_param(gcb,'OutputCurrent',value) to set Output current (A) to a specific value.

Input threshold (V) — Logic switching threshold at input ports
0.5 (default) | real scalar

Logic switching threshold at input ports, specified as a real scalar in volts.

Programmatic Use

• Use get_param(gcb,'InputThreshold') to view the current value of Input threshold (V).
• Use set_param(gcb,'InputThreshold',value) to set Input threshold (V) to a specific

value.

Enable increased buffer size — Enable increased buffer size
off (default) | on

Select to enable increased buffer size during simulation. This increases the buffer size of the Logic
Decision and Slew Rate inside the Charge Pump block. By default, this option is deselected.

Buffer size — Number of samples of the input buffering available during simulation
10 (default) | positive integer scalar

Number of samples of the input buffering available during simulation, specified as a positive integer
scalar. This sets the buffer size of the Logic Decision and Slew Rate inside the Charge Pump block.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value so that
the input buffer contains all the input samples required.

Dependencies

This parameter is only available when Enable increased buffer size option is selected in the
Configuration tab.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size.
• Use set_param(gcb,'NBuffer',value) to set Buffer size to a specific value.

Impairments

Enable current impairments — Add current impairments to simulation
on (default) | off

Select to add current impairments such as current imbalance and leakage current to simulation. By
default, this option is selected.

Current imbalance (A) — Difference between full scale positive and negative current
1e-7 (default) | positive real scalar

Difference between full scale positive and negative current, specified as a positive real scalar in
amperes.

 Charge Pump

2-3

Dependencies

To enable this parameter, select Enable current impairments in the Impairments tab.

Programmatic Use

• Use get_param(gcb,'CurrentImbalance') to view the current value of Current imbalance
(A).

• Use set_param(gcb,'CurrentImbalance',value) to set Current imbalance (A) to a
specific value.

Data Types: double

Leakage current (A) — Output current without any input
1e-8 (default) | nonnegative real scalar

Output current when both inputs are at logic zero, specified as a nonnegative real scalar in amperes.

Dependencies

To enable this parameter, select Enable current impairments in the Impairments tab.

Programmatic Use

• Use get_param(gcb,'LeakageCurrent') to view the current value of Leakage current (A).
• Use set_param(gcb,'LeakageCurrent',value) to set Leakage current (A) to a specific

value.

Data Types: double

Enable timing impairments — Add timing impairments to simulation
on (default) | off

Select to add timing impairments such as rise/fall time and propagation delay to simulation. By
default, this option is selected.

Output step size calculation — Determine how output step size is calculated
Default (default) | Advanced

Determine how output step size is calculated:

• Select Default to calculate output step size from rise/fall time. Output step size (ΔT) is given by

ΔT = Rise/fall time 2

6 · 0.22 .

• Select Advanced to calculate output step size from maximum frequency of interest. Output step
size (ΔT) is given by ΔT = Rise/fall time

6 · Maximum frequency of interest.

Dependencies

To enable this parameter, select Enable timing impairments in the Impairments tab.

Maximum frequency of interest (Hz) — Maximum frequency of interest at output
10e9 (default) | positive real scalar

Maximum frequency of interest at the output, specified as a positive real scalar in Hz.

2 Blocks: PLL

2-4

Dependencies

To enable this parameter, select Enable timing impairments in the Impairments tab and choose
Advanced for Output step size calculation.

Programmatic Use

• Use get_param(gcb,'MaxFreqInterest') to view the current value of Maximum frequency
of interest (Hz).

• Use set_param(gcb,'MaxFreqInterest',value) to set Maximum frequency of interest
(Hz) to a specific value.

Data Types: double

up

Rise/fall time (s) — 20%-80% rise/fall time for up input port
5e-9 (default) | positive real scalar

20%-80% rise/fall time for up input port, specified as a positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable timing Impairments in the Impairments tab.

Programmatic Use

• Use get_param(gcb,'RiseFallUp') to view the current value of up Rise/fall time.
• Use set_param(gcb,'RiseFallUp',value) to set up Rise/fall time to a specific value.

Up propagation delay — Total propagation delay for up input port
6e-9 (default) | positive real scalar

Total propagation delay for up input port, specified as a positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable Impairments in the Impairments tab.

Programmatic Use

• Use get_param(gcb,'PropDelayUp') to view the current value of Up propagation delay.
• Use set_param(gcb,'PropDelayUp',value) to set Up propagation delay to a specific value.

down

Rise/fall time — 20%-80% rise/fall time for down input port
2e-9 (default) | positive real scalar

20%-80% rise/fall time for down input port, specified as a positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable Impairments in the Impairments tab.

Programmatic Use

• Use get_param(gcb,'RiseFallDown') to view the current value of down Rise/fall time.

 Charge Pump

2-5

• Use set_param(gcb,'RiseFallDown',value) to set down Rise/fall time to a specific value.

Down propagation delay — Total propagation delay for down input port
4e-9 (default) | positive real scalar

Total propagation delay for down input port, specified as a positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable Impairments in the Impairments tab.

Programmatic Use

• Use get_param(gcb,'PropDelayDown') to view the current value of Down propagation
delay.

• Use set_param(gcb,'PropDelayDown',value) to set Down propagation delay to a specific
value.

More About
Inside the Charge Pump

The Charge Pump block converts the two outputs of the PFD block into a single output. It consists of
two current branches: one Up and one down. The difference between these two branches is summed
to the leakage current impairment, if enabled.

Each current branch consists of a Logic Decision block, an Impairments subsystem, and a gain block.
The Logic Decision block compares the incoming signal to the Input Threshold. The Impairments
subsystem incorporates the effect of the charge pump impairments. The gain block multiplies the
output of the Impairments subsystem to produce the current level defined in the Output current
parameter.

Version History
Introduced in R2019a

References
[1] Banerjee, Dean. PLL Performance, Simulation and Design. Indianapolis, IN: Dog Ear Publishing,

2006.

[2] Gardner, Floyd M. Phaselock Techniques. Hoboken, NJ: John Wiley & Sons, Inc. 2005.

See Also
PFD | Loop Filter

2 Blocks: PLL

2-6

Dual Modulus Prescaler
Integer clock divider with two divider ratios

Libraries:
Mixed-Signal Blockset / PLL / Building Blocks

Description
The Dual Modulus Prescaler subsystem block consists of a program counter, a swallow counter and a
prescaler.

When the block first receives an input signal, the pulse swallow function is activated. The prescaler
divides the input signal frequency by (N+1), where N is defined by the Prescaler divider value (N)
parameter. Both the program and swallow counters start counting. The swallow counter resets after
counting to S pulses, or (N+1)S cycles, where S is defined by the Swallow counter value (S)
parameter. Then, the pulse swallow function is deactivated, and the prescaler divides the input
frequency by N.

Since the program counter has already sensed S pulses, it requires (P-S) more pulses, or (P-S)N
cycles to reach overflow, where P is defined by the Program counter value (P) parameter. The cycle
repeats after both counters are reset.

The effective divider value of the dual modulus prescaler is the ratio of the input frequency to the
output frequency:

f in
fout

= (N + 1)S + N(P − S) = NP + S

Note To prevent the program counter and prescaler from resetting prematurely before the swallow
counter finishes counting, the condition P ≥ S must be met.

 Dual Modulus Prescaler

2-7

The dual modulus prescaler is also known as pulse swallow divider.

Ports
Input

clk in — Input clock frequency
scalar

Input clock frequency, specified as a scalar. In a phase-locked loop (PLL) system, the clk in port is
connected to the output port of a VCO block.
Data Types: double

Output

clk out — Output clock frequency
scalar

Output clock frequency, specified as a scalar. In a PLL system, the clk out port is connected to the
feedback input port of a PFD block. The output at the clk out port is a square pulse train of 1 V
amplitude.
Data Types: double

Parameters
Program counter value, P — Maximum value of program counter
12 (default) | scalar integer

Maximum value of the program counter, specified as a scalar integer. The counter resets after P
cycles.

Programmatic Use

• Use get_param(gcb,'P') to view the current Program counter value value.
• Use set_param(gcb,'P',value) to set Program counter value to a specific value.

Prescaler divider value, N — Prescaler divider value
4 (default) | scalar integer

Prescaler divider value, specified as a scalar integer. A N/(N+1) dual modulus prescaler divides the
input frequency by either N or N+1, depending on the logical state of modulus control line.

Programmatic Use

• Use get_param(gcb,'N') to view the current Prescaler divider value.
• Use set_param(gcb,'N',value) to set Prescaler divider value to a specific value.

Swallow counter value, S — Maximum value of swallow counter
2 (default) | scalar integer

Maximum value of the swallow counter, specified as a scalar integer. When the swallow counter
resets after S cycles, the pulse swallow function is deactivated.

2 Blocks: PLL

2-8

Programmatic Use

• Use get_param(gcb,'S') to view the current Swallow counter value value.
• Use set_param(gcb,'S',value) to set Swallow counter value to a specific value.

Enable increased buffer size — Enable increased buffer size
off (default) | on

Select to enable increased buffer size during simulation. This increases the buffer size of the Logic
Decision inside the Dual Modulus Prescaler block. By default, this option is deselected.

Buffer size — Number of samples of the input buffering available during simulation
1 (default) | positive integer scalar

Number of samples of the input buffering available during simulation, specified as a positive integer
scalar. This sets the buffer size of the Logic Decision inside the Dual Modulus Prescaler block.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value so that
the input buffer contains all the input samples required.

Dependencies

This parameter is only available when Enable increased buffer size option is selected in the Block
Parameters dialog box.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size.
• Use set_param(gcb,'NBuffer',value) to set Buffer size to a specific value.

More About
Inside the Mask

The Dual Modulus Prescaler subsystem block consists of three different subsystems that implement
the three main parts of the dual modulus prescaler. The Prescaler divides the input frequency by
either N or N+1, depending on the logical state of modulus control line. The Program Counter
subsystem always divides the prescaler output frequency by P.

The Swallow Counter divides the prescaler output by S. S depends on the digital input and can vary
from 1 to maximum number of channels. S also determines the logic state of the modulus control line.

Version History
Introduced in R2019a

References
[1] Razavi, Behzad. RF Microelectronics. Upper Saddle River, NJ: Prentice Hall PTR, 1998.

 Dual Modulus Prescaler

2-9

See Also
PFD | VCO | Single Modulus Prescaler | Fractional Clock Divider with Accumulator | Fractional Clock
Divider with DSM

2 Blocks: PLL

2-10

Fractional Clock Divider with Accumulator
Clock divider that divides frequency of input signal by fractional number

Libraries:
Mixed-Signal Blockset / PLL / Building Blocks

Description
The Fractional Clock Divider with Accumulator block divides the frequency of the input signal by a
tunable fractional value (N.FF). When compared to the Single Modulus Prescaler block, the
Fractional Clock Divider with Accumulator block helps to achieve a narrow channel spacing that can
be less than the reference frequency of a phase-locked loop (PLL) system.

Ports
Input

clk in — Input clock frequency
scalar

Input clock frequency, specified as a scalar. In a PLL system, the clk in port is connected to the
output port of a VCO block.
Data Types: double

div-by — Ratio of output to input clock frequency
fractional scalar

Ratio of output to input clock frequency, specified as a fractional scalar.

The value at the div-by port is split into two parts: the integer part (N) and the fractional part (.FF).
Data Types: double

Output

clk out — Output clock frequency
scalar

Output clock frequency, specified as a scalar. In a PLL system, the clk out port is connected to the
feedback input port of a PFD block. The output at the clk out port is a square pulse train of 1 V
amplitude.
Data Types: double

state — Missing fractional pulse storage
scalar

 Fractional Clock Divider with Accumulator

2-11

The fractional missing pulse storage. The value of the state port goes up by F with each rising edge
of the clk out value of the previous cycle. Whenever the state port value goes over 1, the value
overflows and sets the carry port value to 1.
Data Types: double

carry — Activates the pulse swallow function when state port overflows
0 (default) | 1

Output port that activates the pulse swallow function when state port overflows. The pulse removal is
analogous to dividing the input frequency by N+1 instead of N.
Data Types: Boolean

Parameters
Enable increased buffer size — Enable increased buffer size
off (default) | on

Select to enable increased buffer size during simulation. This increases the buffer size of the Logic
Decision inside the Fractional Clock Divider with Accumulator block. By default, this option is
deselected.

Buffer size — Number of samples of the input buffering available during simulation
1 (default) | positive integer scalar

Number of samples of the input buffering available during simulation, specified as a positive integer
scalar. This sets the buffer size of the Logic Decision inside the Fractional Clock Divider with
Accumulator block.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value so that
the input buffer contains all the input samples required.

Dependencies

This parameter is only available when Enable increased buffer size option is selected in the Block
Parameters dialog box.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size.
• Use set_param(gcb,'NBuffer',value) to set Buffer size to a specific value.

More About
Inside the Mask

The Fractional Clock Divider with Accumulator consists of three subsystems: a Fractional
Accumulator, a Pulse Swallower, and a Single Modulus Prescaler block.

When the block first receives an input signal, the Single Modulus Prescaler block divides the input
signal by the integer part (N) of the value of the div-by port. The fractional part (.FF) is stored in the
state port of the Fractional Accumulator subsystem.

2 Blocks: PLL

2-12

The Fractional Accumulator subsystem updates the state port value with each rising edge received
by the clk out port in the previous cycle. When the value of the state port goes over 1, the value
overflows and changes the value emitted by the carry port to 1.

The carry port activates the Pulse Swallower subsystem, and removes one pulse from the clk in
signal. It is like dividing the input signal by a factor of N+1, achieving the overall fractional division.

Version History
Introduced in R2019a

References
[1] Best, Roland E. Phase-Locked Loop. New York, NY: Tata McGraw-Hill Companies Inc., 2003.

See Also
PFD | VCO | Fractional Clock Divider with DSM | Single Modulus Prescaler | Dual Modulus Prescaler

 Fractional Clock Divider with Accumulator

2-13

Fractional Clock Divider with DSM
Delta Sigma Modulator based fractional clock divider

Libraries:
Mixed-Signal Blockset / PLL / Building Blocks

Description
Using delta sigma (Δ-Σ) modulation technique, a Fractional Clock Divider with DSM reduces the
primary fractional spurs by spreading out the range over which the div-by value is varied. This block
allows delta sigma modulation of up to 4th order.

Ports
Input

clk in — Input clock frequency
scalar

Input clock frequency that needs to be divided, specified as a scalar. In a phase-locked loop (PLL)
system, the clk in port is connected to the output of a VCO block.
Data Types: double

div-by — Ratio of output to input clock frequency
fractional scalar

Ratio of output to input clock frequency, specified as a fractional scalar. The value at the div-by port,
N.FF, is split into two parts: the integer part (N) and the fractional part (.FF).

For an nth-order delta sigma modulator, the value at the div-by port is achieved by varying N
between 2n different integer values.

Note For an nth order delta sigma modulator, use a value ≥ 2n at the div-by port.

Data Types: double

Output

clk out — Output clock frequency
scalar

Output clock frequency, specified as a scalar. In a PLL system, the clk out port is connected to the
feedback input port of a PFD block. The output at the clk out port is a square pulse train of 1 V
amplitude.

2 Blocks: PLL

2-14

Data Types: double

Parameters
Delta Sigma Modulator order — Order of the Delta Sigma Modulator
3rd order (default) | 1st order | 2nd order | 4th order

The order of the delta sigma modulator.

For an nth-order of the delta sigma modulator, the value at the div-by port is achieved by varying the
N counter value between 2n different values. Modulator order defines the range of values by which
the signal at the clk in port will be divided, providing a division effect similar to N.FF value at the
div-by port.

Programmatic Use

• Use get_param(gcb,'dsm') to view the current Delta Sigma Modulator order.
• Use set_param(gcb,'dsm',value) to set Delta Sigma Modulator order to a specific value.

Enable increased buffer size — Enable increased buffer size
off (default) | on

Select to enable increased buffer size during simulation. This increases the buffer size of the Logic
Decision inside the Fractional Clock Divider with DSM block. By default, this option is deselected.

Buffer size — Number of samples of the input buffering available during simulation
1 (default) | positive integer scalar

Number of samples of the input buffering available during simulation, specified as a positive integer
scalar. This sets the buffer size of the Logic Decision inside the Fractional Clock Divider with DSM
block.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value so that
the input buffer contains all the input samples required.

Dependencies

This parameter is only available when Enable increased buffer size option is selected in the Block
Parameters dialog box.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size.
• Use set_param(gcb,'NBuffer',value) to set Buffer size to a specific value.

More About
Inside the Mask

The Fractional Clock Divider with DSM subsystem block consists of four delta sigma modulators of
orders one to four encapsulated inside the DSM Selector variant subsystem. The output of the DSM
selector drives a Single Modulus Prescaler block. Given the Delta Sigma Modulator order,
corresponding delta sigma modulator gets activated.

 Fractional Clock Divider with DSM

2-15

The modulator order defines the range over which the N counter value is varied. For an nth-order
delta sigma modulator, N is varied over 2n different values. This variation is achieved by integrating
the changes in the fractional part (.FF) from the previous cycle and quantizing the differential
changes.

The general form of the transfer function for an nth order delta sigma modulator is:

Y(z) = X(z) + E(z) · (1− z−1)n

where

• Y(z) = Output of the modulator
• X(z) = Input the modulator
• E(z) = Quantization error

E(z) is calculated by subtracting the value of input X(z) in the present cycle from its value in the
previous cycle. In other words, E(z) is a form of a digital highpass filtering.

The higher-order modulators reduce the primary fractional spurs by alternating N over a larger range
of integer values. As a result, the fractional spurs are pushed to higher frequencies in the frequency
spectrum and can be filtered more effectively by the loop filter in a PLL system.

For example, if the third-order delta sigma modulator is activated, N is varied over 8 different values,
which can range from (N-3) to (N+4).

Delta Sigma Modulator Sequence

Modulator Order Range DSM Sequence
1st 0, 1 N, N+1
2nd -1, 0, 1, 2 N-1, N, N+1, N+2
3rd -3, -2, -1, 0, 1, 2, 3, 4 N-3, N-2, …, N+4
4th -7, -6, …, 7, 8 N-7, N-6, …, N+8

Version History
Introduced in R2019a

References
[1] Miller, B. and Conley, R.J., A Multiple Modulator Fractional Divider. IEEE Transactions on

Instrumentation and Measurement, vol. 40, no. 3, 1991, pp. 578-583.

See Also
PFD | VCO | Fractional Clock Divider with Accumulator | Single Modulus Prescaler | Dual Modulus
Prescaler

2 Blocks: PLL

2-16

Loop Filter
Model second-, third-, or fourth-order passive loop filter

Libraries:
Mixed-Signal Blockset / PLL / Building Blocks

Description
The Loop Filter subsystem block is a passive filter whose order can vary from two to four. In a phase-
locked loop (PLL) system, the subsystem filters the output of Charge Pump block and delivers the
control voltage to a VCO block to generate required frequency signal.

nth Order Passive Loop Filter

Ports
Input

in — Input current
scalar

Input current, specified as a scalar. In a phase-locked loop (PLL) system, the in port is connected to
the output of a Charge Pump block, which provides the current value.
Data Types: double

Output

out — Output voltage
scalar

Output voltage, specified as a scalar. In a PLL system, the out port is connected to the input port of a
VCO block and provides the control voltage to VCO.

 Loop Filter

2-17

Data Types: double

Parameters
Configuration

Loop filter type — Order of the loop filter
3rd Order passive (default) | 2nd Order passive | 4th Order passive

Order of the loop filter. Simulates a second-, third-, or fourth-order passive RC loop filter.

Programmatic Use

• Use get_param(gcb,'FilterType') to view the current order of Loop filter type.
• Use set_param(gcb,'FilterType',value) to set Loop filter type to a specific order.

C1 (F) — Capacitance 1
14.5661e-15 (default) | positive real scalar

Capacitor value C1, specified as a positive real scalar in farads.

Programmatic Use

• Use get_param(gcb,'C1') to view the current value of C1 (F).
• Use set_param(gcb,'C1',value) to set C1 (F) to a specific value.

Data Types: double

C2 (F) — Capacitance 2
160.276e-15 (default) | positive real scalar

Capacitor value C2, specified as a positive real scalar in farads.

Programmatic Use

• Use get_param(gcb,'C2') to view the current value of C2 (F).
• Use set_param(gcb,'C2',value) to set C2 (F) to a specific value.

Data Types: double

C3 (F) — Capacitance 3
1.0452e-15 (default) | positive real scalar

Capacitor value C3, specified as a positive real scalar in farads.

Dependencies

To enable this parameter, select 3rd Order passive or 4th Order passive in Loop filter type.

Programmatic Use

• Use get_param(gcb,'C3') to view the current value of C3 (F).
• Use set_param(gcb,'C3',value) to set C3 (F) to a specific value.

Data Types: double

2 Blocks: PLL

2-18

C4 (F) — Capacitance 4
1e-12 (default) | positive real scalar

Capacitor value C4, specified as a positive real scalar in farads.

Dependencies

To enable this parameter, select 4th Order passive in Loop filter type.

Programmatic Use

• Use get_param(gcb,'C4') to view the current value of C4 (F).
• Use set_param(gcb,'C4',value) to set C4 (F) to a specific value.

Data Types: double

R2 (ohms) — Resistance 2
3.9955e6 (default) | positive real scalar

Resistor value R2, specified as a positive real scalar in ohms.

Programmatic Use

• Use get_param(gcb,'R2') to view the current value of R2 (ohms).
• Use set_param(gcb,'R2',value) to set R2 (ohms) to a specific value.

Data Types: double

R3 (ohms) — Resistance 3
51.0435e6 (default) | positive real scalar

Resistor value R3, specified as a positive real scalar in ohms.

Dependencies

To enable this parameter, select 3rd Order passive or 4th Order passive in Loop filter type.

Programmatic Use

• Use get_param(gcb,'R3') to view the current value of R3 (ohms).
• Use set_param(gcb,'R3',value) to set R3 (ohms) to a specific value.

Data Types: double

R4 (ohms) — Resistance 4
12e3 (default) | positive real scalar

Resistor value R4, specified as a positive real scalar in ohms.

Dependencies

To enable this parameter, select 4th Order passive in Loop filter type.

Programmatic Use

• Use get_param(gcb,'R4') to view the current value of R4 (ohms).
• Use set_param(gcb,'R4',value) to set R4 (ohms) to a specific value.

 Loop Filter

2-19

Data Types: double

Enable increased buffer size — Enable increased buffer size
off (default) | on

Select to enable increased buffer size during simulation. This increases the buffer size of the Convert
Sample Time subsystem inside the Loop Filter block. By default, this option is deselected.

Buffer size — Number of samples of the input buffering available during simulation
1000 (default) | positive integer scalar

Number of samples of the input buffering available during simulation, specified as a positive integer
scalar. This sets the buffer size of the Convert Sample Time subsystem inside the Loop Filter block.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value so that
the input buffer contains all the input samples required.

Dependencies

This parameter is only available when Enable increased buffer size option is selected in the
Configuration tab.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size.
• Use set_param(gcb,'NBuffer',value) to set Buffer size to a specific value.

Data Types: double

Impairments

Enable impairments — Add circuit impairments to simulation
off (default) | on

Select to add circuit impairments to simulation. By default, this option is disabled.

Operating temperature (℃) — Temperature to determine the level of thermal noise
30 (default) | scalar

Temperature of the resistor, specified as a scalar in degree Celsius. Operating temperature (℃)
determines the level of thermal (Johnson) noise.

Dependencies

To enable this parameter, select Enable impairments in the Impairments tab.

Programmatic Use

• Use get_param(gcb,'Temperature') to view the current value of Operating temperature
(℃).

• Use set_param(gcb,'Temperature',value) to set Operating temperature (℃) to a
specific value.

Data Types: double

2 Blocks: PLL

2-20

More About
Inside the Mask

The Loop Filter subsystem block consists of four parts: Convert Sample Time, Main Filter, Extra
Poles, and Resistor Thermal Noise. The Main Filter and Extra Pole are implemented using Biquad IIR
filters, and generate the transfer function based on the filter order selected. Convert Sample Time is
used to convert the discrete output of PFD to a continuous signal. Resistor Thermal Noise
incorporates the thermal noise based on the operating temperature of loop filter.

Loop Filter Transfer Function

Transfer function of second order passive loop filter:

Z(s) = R2 · C2 · s + 1
A2 · s2 + A1 · s

Transfer function of third order passive loop filter:

Z(s) = R2 · C2 · s + 1
A3 · s3 + A2 · s2 + A1 · s

Transfer function of fourth order passive loop filter:

Z(s) = R2 ⋅ C2 ⋅ s + 1
A4 · s4 + A3 · s3 + A2 · s2 + A1 · s

where, A1, A2, A3, and A4 are the loop filter coefficients.

Loop Filter Coefficients

Filter Order A1 A2 A3 A4
2nd C1+C2 C1·C2·R2 N/A N/A
3rd C1+C2+C3 (R2·C2·C3)+

(R2·C1·C2)+
(R3·C3·C1)+
(R3·C3·C2)

C1·C2·C3·R2·R3 N/A

4th C1+C2+C3+C4 C2·R2(C1+C3+C4)
+R3(C1+C2)
(C3+C4)+C4·R4(C
1+C2+C3)

((R2·C2·C3)+
(R2·C1·C2)+
(R3·C3·C1)+
(R3·C3·C2))R4·C4
+C1·C2·R2·R3(C3
+C4)

C1·C2·C3·C4·R2·R
3·R4

Version History
Introduced in R2019a

References
[1] Banerjee, Dean. PLL Performance, Simulation and Design. Indianapolis, IN: Dog Ear Publishing,

2006.

 Loop Filter

2-21

[2] Bleany, B.I and Bleany B. Electricity and Magnetism. Oxford, UK: Oxford University Press, 1976.

See Also
Charge Pump | VCO

2 Blocks: PLL

2-22

PFD
Phase/frequency detector that compares phase and frequency between two signals

Libraries:
Mixed-Signal Blockset / PLL / Building Blocks

Description
The PFD block produces two output pulses that differ in duty cycle. The difference in the duty cycle is
proportional to the phase difference between input signals. In frequency synthesizer circuits, such as
phase-locked loops (PLL), the PFD block compares the phase and frequency between the reference
signal and signal generated by the VCO block and determines the phase error.

Ports
Input

reference — Reference frequency
scalar

Input port that transmits reference frequency to determine phase error.
Data Types: double

feedback — Feedback frequency
scalar

Output port that transmits the feedback frequency to determine the phase error. In a PLL system, the
output of the VCO is fed back through feedback port to PFD after passing through a clock divider.
Data Types: double

Output

up — Transmits reference frequency
scalar

Output port that transmits reference frequency to Charge Pump to convert the phase error into
current. The difference in the duty cycle of signals in up and down ports is proportional to the phase
difference between the signals in reference and feedback ports.
Data Types: double

down — Transmits feedback frequency
scalar

Output port that transmits feedback frequency to Charge Pump to convert the phase error into
current. The difference in the duty cycle of signals in up and down ports is proportional to the phase
difference between the signals in reference and feedback ports.

 PFD

2-23

Data Types: double

Parameters
Configuration

Deadband compensation (s) — Delay added for active output near zero phase offset
30e-12 (default) | positive real scalar

Delay added for active output near zero phase offset, specified as a positive real scalar in seconds.
Deadband is the phase offset band near zero phase offset for which the PFD output is negligible.

Programmatic Use

• Use get_param(gcb,'DeadbandCompensation') to view the current value of Deadband
compensation.

• Use set_param(gcb,'DeadbandCompensation',value) to set up Rise/fall time to a specific
value.

Data Types: double

Enable increased buffer size — Enable increased buffer size
off (default) | on

Select to enable increased buffer size during simulation. This increases the buffer size of the Variable
Pulse Delay, Logic Decision, and Slew Rate blocks inside the PFD block. By default, this option is
deselected.

Buffer size — Number of samples of the input buffering available during simulation
10 (default) | positive integer scalar

Number of samples of the input buffering available during simulation, specified as a positive integer
scalar. This sets the buffer size of the Variable Pulse Delay, Logic Decision, and Slew Rate blocks
inside the PFD block.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value so that
the input buffer contains all the input samples required.

Dependencies

This parameter is only available when Enable increased buffer size option is selected in the
Configuration tab.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size.
• Use set_param(gcb,'NBuffer',value) to set Buffer size to a specific value.

Data Types: double

Impairments

Enable impairments — Add circuit impairments to simulation
on (default) | off

2 Blocks: PLL

2-24

Select to add circuit impairments such as rise/fall time and propagation delay to the simulation. By
default, this option is selected.

Output step size calculation — Determine how output step size is calculated
Default (default) | Advanced

Determine how output step size is calculated:

• Select Default to calculate output step size from rise/fall time. Output step size (ΔT) is given by

ΔT = Rise/fall time 2

6 · 0.22 .

• Select Advanced to calculate output step size from maximum frequency of interest. Output step
size (ΔT) is given by ΔT = Rise/fall time

6 · Maximum frequency of interest.

Dependencies

To enable this parameter, select Enable Impairments in the Impairments tab.

Maximum frequency of interest (Hz) — Maximum frequency of interest at output
10e9 (default) | positive real scalar

Maximum frequency of interest at the output, specified as a positive real scalar in Hz.
Dependencies

To enable this parameter, select Enable Impairments in the Impairments tab and choose
Advanced for Output step size calculation.
Programmatic Use

• Use get_param(gcb,'MaxFreqInterest') to view the current value of Maximum frequency
of interest (Hz).

• Use set_param(gcb,'MaxFreqInterest',value) to set Maximum frequency of interest
(Hz) to a specific value.

Data Types: double

Rise/fall time (s) — 20% – 80% rise/fall time for up output port of PFD
3e-11 (default) | positive real scalar

20% – 80% rise/fall time for the up output port of the PFD, specified as a positive real scalar in
seconds.
Dependencies

To enable this parameter, select Enable Impairments in the Impairments tab.
Programmatic Use

• Use get_param(gcb,'RiseFallTime') to view the current value of Rise/fall time (s).
• Use set_param(gcb,'RiseFallTime',value) to set Impairments to a specific value.

Data Types: double

Propagation Delay (s) — Delay from input port to output port of PFD
50e-12 (default) | positive real scalar

 PFD

2-25

Delay from the input port to output port of the PFD, specified as a positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable Impairments in the Impairments tab.

Programmatic Use

• Use get_param(gcb,'PropDelay') to view the current value of Propagation Delay (s).
• Use set_param(gcb,'PropDelay',value) to set Propagation Delay (s) to a specific value.

Data Types: double

More About
Inside the Mask

PFD consists of two synchronous D flip-flops. The reference and feedback signals received at the
corresponding ports act as the trigger. The outputs of the two flip-flops pass through a NAND gate,
which acts as the reset signal. A pulse delay is introduced after the NAND gate using Variable Pulse
Delay block to compensate for deadband.

The impairments are contained in variant subsystems and activated when impairments are enabled.
The impairment subsystem utilized Slew Rate block to implement rise/fall time and propagation delay.

Version History
Introduced in R2019a

References
[1] Banerjee, Dean. PLL Performance, Simulation and Design. Indianapolis, IN: Dog Ear Publishing,

2006.

See Also
Charge Pump | Fractional Clock Divider with Accumulator | Fractional Clock Divider with DSM |
Single Modulus Prescaler | Dual Modulus Prescaler

2 Blocks: PLL

2-26

Single Modulus Prescaler
Integer clock divider that divides frequency of input signal

Libraries:
Mixed-Signal Blockset / PLL / Building Blocks

Description
The Single Modulus Prescaler subsystem block divides the frequency of the input signal by a tunable
integer value, N, passed to the div-by port. In frequency synthesizer circuits, such as a phase-locked
loop (PLL) system, these prescalers divide the VCO output frequency by an integer value. The
resulting lower frequency at the prescaler output port is comparable to the reference input at the
PFD block. The Single Modulus Prescaler is also termed as integer clock divider.

Ports
Input

clk in — Input clock frequency
scalar

Input clock frequency, specified as a scalar. In a PLL system, the clk in port is connected to the
output port of a VCO block.
Data Types: double

div-by — Ratio of output to input clock frequency
scalar integer

Ratio of output to input clock frequency, expressed as a scalar integer.
Data Types: double

Output

clk out — Output clock frequency
scalar

Output clock frequency, expressed as a scalar. In a PLL system, the clk out port is connected to the
feedback input port of a PFD block. The output at the clk out port is a square pulse train of 1 V
amplitude.
Data Types: double

Parameters
Enable increased buffer size — Enable increased buffer size
off (default) | on

 Single Modulus Prescaler

2-27

Select to enable increased buffer size during simulation. This increases the buffer size of the Logic
Decision inside the Single Modulus Prescaler block. By default, this option is deselected.

Buffer size — Number of samples of the input buffering available during simulation
1 (default) | positive integer scalar

Number of samples of the input buffering available during simulation, specified as a positive integer
scalar. This sets the buffer size of the Logic Decision inside the Single Modulus Prescaler block.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value so that
the input buffer contains all the input samples required.

Dependencies

This parameter is only available when Enable increased buffer size option is selected in the Block
Parameters dialog box.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size.
• Use set_param(gcb,'NBuffer',value) to set Buffer size to a specific value.

More About
Inside the Mask

The Single Modulus Prescaler block contains the integer clock divider subsystem. Inside the
subsystem, a trigger port tracks the rising edges of the input clock signal received at clk in port. The
output sends a pulse only after N cycles have been detected. As a result, the input clock frequency
reduces by a factor of N.

Version History
Introduced in R2019a

References
[1] Razavi, Behzad. RF Microelectronics. Upper Saddle River, NJ: Prentice Hall PTR, 1998.

2 Blocks: PLL

2-28

See Also
PFD | VCO | Dual Modulus Prescaler | Fractional Clock Divider with Accumulator | Fractional Clock
Divider with DSM

 Single Modulus Prescaler

2-29

VCO
Model voltage controlled oscillator

Libraries:
Mixed-Signal Blockset / PLL / Building Blocks

Description
VCO or voltage controlled oscillator is a voltage to frequency converter. It produces an output square
wave signal whose frequency is controlled by the voltage at the input vctrl port. The frequency of the
output signal, F is determined either by:

F = KVCO · Vctrl + Fo

where:

• Kvco = voltage sensitivity (in Hz/V)
• Vctrl = control voltage (in V)
• Fo= free running frequency (in Hz)

or from linear interpolation using the mapping:

F = interp Fout Vcntl

where:

• Vctnl = vector of control voltages (in V)
• Fout= vector of corresponding output frequencies (in Hz)

Ports
Input

vctrl — Voltage used to control VCO output frequency
scalar | vector

VCO control voltage used to control the output frequency of the VCO. In a phase-locked loop (PLL)
system, vctrl is the output of the Loop Filter that contains the phase error information.
Data Types: double

Output

vco out — Output square wave signal determined by vctrl port
scalar

2 Blocks: PLL

2-30

Output square wave signal of VCO. In a PLL system, vco out is the output clock generated by the
PLL. It is also fed back to the PFD block through a clock divider to complete the control loop.
Data Types: double

Parameters
Parameters

Specify using — Define how VCO output frequency is specified
Voltage sensitivity (default) | Output frequency vs. control voltage

Define how VCO output frequency is specified:

• Select Voltage sensitivity to specify output frequency from Voltage sensitivity (Hz/V) and
Free running frequency (Hz).

• Select Output frequency vs. control voltage to interpolate output frequency from
Control voltage (V) vector versus Output frequency (Hz) vector.

Programmatic Use
Block parameter: SpecifyUsing
Type: character vector
Values: Voltage sensitivity | Output frequency vs. control voltage
Default: Voltage sensitivity

Voltage sensitivity (Hz/V) — Measure of change in output frequency of VCO
100e6 (default) | positive real scalar

Measure of change in output frequency for input voltage change, specified as a positive real scalar
with units in Hz/V. This parameter is also reported as VCO voltage sensitivity in the Loop Filter tab
and is used to automatically calculate the filter component values of the loop filter.

Dependencies

To enable this parameter, select Voltage sensitivity in Specify using in the Parameters tab.

Programmatic Use
Block parameter: Kvco
Type: character vector
Values: positive real scalar
Default: 100e6
Data Types: double

Free running frequency (Hz) — VCO output frequency without control voltage
2.5e9 (default) | positive real scalar

Frequency of the VCO without any control voltage input (0 V), or the quiescent frequency, specified
as a positive real scalar in Hz.

Dependencies

To enable this parameter, select Voltage sensitivity in Specify using in the Parameters tab.

Programmatic Use
Block parameter: Fo

 VCO

2-31

Type: character vector
Values: positive real scalar
Default: 2.5e9
Data Types: double

Control voltage (V) — Control voltage values
[-5 0 5] (default) | real valued vector

Control voltage values of the VCO, specified as a real valued vector in volts.

Dependencies

To enable this parameter, select Output frequency vs. control voltage in Specify using in
the Parameters tab.

Programmatic Use
Block parameter: ControlVoltage
Type: character vector
Values: real valued vector
Default: [-5 0 5]
Data Types: double

Output frequency (Hz) — VCO output frequency values
[2e9 2.5e9 3e9] (default) | positive real valued vector

Output frequency of the values of the VCO, corresponding to the Control voltage (V) vector,
specified in Hz.

Dependencies

To enable this parameter, select Output frequency vs. control voltage in Specify using in
the Parameters tab.

Programmatic Use
Block parameter: OutputFrequency
Type: character vector
Values: positive real valued vector
Default: [2e9 2.5e9 3e9]
Data Types: double

Output amplitude (V) — Maximum amplitude of the VCO output voltage
1 (default) | positive real scalar

Maximum amplitude of the VCO output voltage, specified as a positive real scalar.

Programmatic Use
Block parameter: Amplitude
Type: character vector
Values: positive real scalar
Default: 1
Data Types: double

Enable increased buffer size — Enable increased buffer size
off (default) | on

2 Blocks: PLL

2-32

Select to enable increased buffer size during simulation. This increases the buffer size of the Variable
Pulse Delay block inside the VCO block. By default, this option is deselected.

Buffer size — Number of samples of the input buffering available during simulation
10 (default) | positive integer scalar

Number of samples of the input buffering available during simulation, specified as a positive integer
scalar. This sets the buffer size of the Variable Pulse Delay block inside the VCO block.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value so that
the input buffer contains all the input samples required.

Dependencies

To enable this parameter, select Enable increased buffer size.

Programmatic Use
Block parameter: NBuffer
Type: character vector
Values: positive integer scalar
Default: 10
Data Types: double

Impairments

Add phase noise — Add phase noise as a function of frequency
on (default) | off

Select to introduce phase noise as a function of frequency to the VCO. By default, this option is
selected.

Phase noise frequency offset (Hz) — Frequency offsets of phase noise from carrier frequency
[10e3 100e3 1e6 3e6 10e6] (default) | positive real valued vector

The frequency offsets of phase noise from the carrier frequency specified as a positive real valued
vector in Hz.

Dependencies

To enable this parameter, select Add phase noise in the Impairments tab.

Programmatic Use
Block parameter: Foffset
Type: character vector
Values: positive real valued vector
Default: [10e3 100e3 1e6 3e6 10e6]
Data Types: double

Phase noise level (dBc/Hz) — Phase noise power at specified frequency offsets relative to the carrier
[-77 -108 -134 -145 -154] (default) | negative real valued vector

The phase noise power in a 1 Hz bandwidth centered at the specified frequency offsets relative to the
carrier specified as a negative real valued vector in dBc/Hz. The elements of Phase noise level
corresponds to relative elements in the Phase noise frequency offset.

 VCO

2-33

Dependencies

To enable this parameter, select Add phase noise in the Impairments tab.

Programmatic Use
Block parameter: PhaseNoise
Type: character vector
Values: negative real valued vector
Default: [-77 -108 -134 -145 -154]
Data Types: double

More About
VCO Subsystem

The VCO subsystem block consists of two subsystems, Ideal VCO and Real VCO encapsulated under
one variant subsystem.

If Add phase noise impairment is disabled, then the Ideal VCO subsystem gets active. This produces
the following two orthogonal output signals, without any phase noise impairment and hence the name
Ideal VCO:

y1(t) = Acos∫ 2πKvco * Vctrl + 2πFout dt

y2(t) = − Asin∫ 2πKvco * Vctrl + 2πFout dt

Out of the two orthogonal outputs, only the real part of the signal, y1(t) is connected to the output
port of VCO.

When the Add phase noise impairment is enabled, the Real VCO block becomes active which
introduces phase noise as a function of frequency to the ideal VCO output. The subsystem consists of
the Ideal VCO block with a phase noise generator block. The latter adds phase noise impairment to
the input signal.

Version History
Introduced in R2019a

References
[1] Banerjee, Dean. PLL Performance, Simulation and Design. Indianapolis, IN: Dog Ear Publishing,

2006.

See Also
Loop Filter | PFD | VCO Testbench | Ring Oscillator VCO

2 Blocks: PLL

2-34

Ring Oscillator VCO
Model ring oscillator VCO

Libraries:
Mixed-Signal Blockset / PLL / Building Blocks

Description
The Ring Oscillator VCO block models the output signal, frequency control, period jitter, and flicker
noise of a VCO (voltage controlled oscillator) such as a bias controlled ring oscillator circuit. This
block generates the phase noise using a mathematical description of the phase noise of ring
oscillators. This allows faster computation of simulation results during both startup and the
subsequent simulations. You can also control the phase noise profile by selecting the Gaussian noise
level, corner frequency, and flicker exponent. The phase noise spectrum is limited to the spectra that
can be produced by the physical model of a ring oscillator.

You can choose the coefficients for the mathematical description of the phase noise. You can provide a
specific phase noise spectral density from a data sheet and compare that to the phase noise spectral
density that the mathematical coefficients produce. You can then adjust the coefficients to fit the
specified phase noise in a way that makes the most sense physically.

Note If the flicker noise corner frequency is set to zero, the Ring Oscillator VCO block can also be
used to model a tank-tuned VCO.

Ports
Input

vctrl — Voltage used to control VCO output frequency
scalar | vector

VCO control voltage used to control the output frequency of the ring oscillator VCO. In a phase-locked
loop (PLL) system, vctrl is the output of the Loop Filter that contains the phase error information.
Data Types: double

Output

vco out — Output signal determined by vctrl port
scalar

Output signal of the ring oscillator VCO. In a PLL system, vco out is the output clock generated by
the PLL. It is also fed back to the PFD block through a clock divider to complete the control loop.
Data Types: double

 Ring Oscillator VCO

2-35

Parameters
Parameters

Specify using — Define how VCO output frequency is specified
Voltage sensitivity (default) | Output frequency vs. control voltage

Define how the VCO output frequency is specified:

• Select Voltage sensitivity to specify output frequency from the Voltage sensitivity (Hz/V)
and Free running frequency (Hz) parameters.

• Select Output frequency vs. control voltage to interpolate output frequency from the
Control voltage (V) vector versus Output frequency (Hz) vector.

Programmatic Use
Block parameter: SpecifyUsing
Type: character vector
Values: Voltage sensitivity | Output frequency vs. control voltage
Default: Voltage sensitivity

Voltage sensitivity (Hz/V) — Measure of change in output frequency of VCO
100e6 (default) | positive real scalar

Measure of change in output frequency for input voltage change, specified as a positive real scalar
with units in Hz/V. This parameter is also reported as VCO voltage sensitivity in the Loop Filter tab
and is used to automatically calculate the filter component values of the loop filter.

Dependencies

To enable this parameter, in the Parameters tab, set Specify using to Voltage sensitivity.

Programmatic Use
Block parameter: Kvco
Type: character vector
Values: positive real scalar
Default: 100e6
Data Types: double

Free running frequency (Hz) — VCO output frequency without control voltage
2.5e9 (default) | positive real scalar

Frequency of the VCO without any control voltage input (0 V) or the quiescent frequency, specified as
a positive real scalar in hertz.

Dependencies

To enable this parameter, in the Parameters tab, set Specify using to Voltage sensitivity.

Programmatic Use
Block parameter: Fo
Type: character vector
Values: positive real scalar
Default: 2.5e9
Data Types: double

2 Blocks: PLL

2-36

Control voltage (V) — Control voltage values
[-5 0 5] (default) | real valued vector

Control voltage values of the VCO, specified as a real valued vector in volts.

Dependencies

To enable this parameter, in the Parameters tab, set Specify using to Output frequency vs.
control voltage.

Programmatic Use
Block parameter: ControlVoltage
Type: character vector
Values: real valued vector
Default: [-5 0 5]
Data Types: double

Output frequency (Hz) — VCO output frequency values
[2e9 2.5e9 3e9] (default) | positive real valued vector

Output frequency of the VCO corresponding to the Control voltage (V) vector, specified in hertz.

Dependencies

To enable this parameter, in the Parameters tab, set Specify using to Output frequency vs.
control voltage.

Programmatic Use
Block parameter: OutputFrequency
Type: character vector
Values: positive real valued vector
Default: [2e9 2.5e9 3e9]
Data Types: double

Output amplitude (V) — Maximum amplitude of VCO output voltage
1 (default) | positive real scalar

Maximum amplitude of the VCO output voltage, specified as a positive real scalar.

Programmatic Use
Block parameter: Amplitude
Type: character vector
Values: positive real scalar
Default: 1
Data Types: double

Enable increased buffer size — Enable increased buffer size
off (default) | on

Select to enable increased buffer size during simulation. This increases the buffer size of the Variable
Pulse Delay block inside the Ring Oscillator VCO block. By default, this option is deselected.

Buffer size — Number of samples of input buffering available during simulation
10 (default) | positive integer scalar

 Ring Oscillator VCO

2-37

Number of samples of input buffering available during simulation, specified as a positive integer
scalar. This sets the buffer size of the Variable Pulse Delay block inside the Ring Oscillator VCO block.

Selecting a different simulation solver or sampling strategies can change the number of input
samples needed to produce an accurate output sample. Set the Buffer size to a large enough value
so that the input buffer contains all the input samples required.

Dependencies

To enable this parameter, select Enable increased buffer size.

Programmatic Use
Block parameter: NBuffer
Type: character vector
Values: positive integer scalar
Default: 10
Data Types: double

Impairments

Add phase noise — Add phase noise as a function of frequency
on (default) | off

Select to introduce phase noise as a function of frequency to the VCO. By default, this option is
selected.

Phase noise frequency offset (Hz) — Frequency offsets of specified phase noise from carrier
frequency
[30e3 100e3 1e6 3e6 10e6] (default) | positive real valued vector

The frequency offsets of the specified phase noise from the carrier frequency, specified as a positive
real valued vector in hertz.

Dependencies

To enable this parameter, select Add phase noise in the Impairments tab.

Programmatic Use
Block parameter: Foffset
Type: character vector
Values: positive real valued vector
Default: [30e3 100e3 1e6 3e6 10e6]
Data Types: double

Phase noise level (dBc/Hz) — Specified phase noise power at phase noise frequency offsets relative
to the carrier
[-56 -106 -132 -143 -152] (default) | negative real valued vector

The specified phase noise power in a 1 Hz bandwidth centered at the phase noise frequency offsets
relative to the carrier, specified as a negative real valued vector in dBc/Hz. The elements of Phase
noise level correspond to relative elements in the Phase noise frequency offset (Hz) parameter.

Dependencies

To enable this parameter, select Add phase noise in the Impairments tab.

2 Blocks: PLL

2-38

Programmatic Use
Block parameter: PhaseNoise
Type: character vector
Values: negative real valued vector
Default: [-56 -106 -132 -143 -152]
Data Types: double

Estimate phase noise parameters — Set noise parameters intended to match specified noise
spectrum
button

Click to set the noise parameters to an initial estimate intended to match the specified noise
spectrum.

Period jitter (S) — Standard deviation of period jitter
1.7e-15 (default) | positive real scalar

Standard deviation of the period jitter, specified as a positive real scalar in seconds. Period jitter is
the deviation in cycle time of a clock signal with respect to the ideal period.

Programmatic Use
Block parameter: PeriodJitter
Type: character vector
Values: positive real scalar
Default: 1.7e-15

Flicker corner frequency (Hz) — Corner frequency of flicker noise
5e5 (default) | scalar

Corner frequency of the flicker noise, specified as a scalar in hertz. Flicker corner frequency (Hz)
is defined as the frequency at which the phase noise transitions from 1/f2 to 1/f3 due to flicker noise.
At this frequency, the spectral densities of period jitter and flicker noise are equal.

Programmatic Use
Block parameter: CornerFrequency
Type: character vector
Values: scalar
Default: 5e5

Customize flicker exponent (Advanced feature) — Customize flicker noise power spectral
distribution
off (default) | on

Select this parameter to customize the power spectral distribution of the flicker noise. Traditionally,
flicker noise is defined as the 1/f noise, but it can vary as 1/fV, where 0.8<V<1.5.

Flicker exponent — Flicker noise power exponent
1.0 (default) | 0.8 | 0.9 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5

Flicker noise power exponent, specified between 0.8 to 1.5.

Programmatic Use
Block parameter: FlickerExponent
Type: character vector

 Ring Oscillator VCO

2-39

Values: 1.0 | 0.8 | 0.9 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5
Default: 1.0

Plot fit — Plot specified and expected output phase noise density
button

Click to plot the specified phase noise density and expected output phase noise density.

More About
Phase Noise in Ring Oscillator VCO

The Ring Oscillator VCO block generates the phase noise with the help of a Gaussian noise source
and a flicker filter.

When enable the phase noise, the phase noise is calculated from the variance of the period offset
stochastic process from the spectral density at a single frequency. Given the oscillation frequency f0,
offset frequency f , and single sideband spectral density ℒ(f) , the variance of the period offset is:

σT2 = ℒ f f 2

f03

Thus, except for flicker noise, you need a period offset derived from an uncorrelated random process
with a constant variance. This period offset is generated by the block’s Gaussian noise source.

To model flicker noise, the flicker filter introduces additional gain at low frequencies, down to four
orders of magnitude below the flicker corner frequency. To increase the energy spectral density from
1/f2 to 1/f3, the flicker filter must introduce a voltage gain of 1/√f below the corner frequency while
maintaining unity gain above the corner frequency. To achieve this, the flicker filter is a recursive
digital filter with an alternating sequence of four poles and four zeros. The lowest frequency zero is a
constant factor higher than the lowest frequency pole, the next higher frequency pole is the same
constant factor higher than the lowest frequency zero, and that pattern of alternating poles and zeros
is maintained through the remainder of the sequence. The constant factor is a function of the flicker
filter exponent, with a factor of the square root of ten for the nominal case of 1/f flicker noise.

To minimize numerical noise in the flicker filter, the sample rate of the Gaussian noise source and
flicker filter is limited to 20 times the highest phase noise specification offset frequency, unless that

2 Blocks: PLL

2-40

sample rate is comparable to or greater than twice the frequency of oscillation. For higher phase
specification noise offset frequencies, the sample rate is limited to twice the frequency of oscillation.

The variance of the Gaussian noise source is adjusted to compensate for the difference in sample rate
between the noise source and the oscillator’s frequency of oscillation.

When the phase noise is disabled, the variance of the Gaussian noise is set to zero.

Matching Measured Phase Noise to Physical Model

Specified phase noise spectra often include measurement artifacts that should not be included in the
model of the VCO itself. While the parameter values produced by the Estimate phase noise
parameters button will often come close to creating an appropriate physical model, there will be
cases that require your judgement. Two common problems are noise floor and resolution bandwidth.

Sometimes, the measured phase noise appears to match a physical model up to frequencies for which
the phase noise may be below the noise floor of the measurement.

It appears that there is a measurement noise floor at –140 dBc/Hz for the specification dataset, and
the phase noise for the device under test is probably below that noise floor for offset frequencies
above 100 MHz. In this case, a set of parameter values that fit best to the data at lower frequency
offsets is likely to produce a more accurate model.

Sometimes, the measured phase noise appears to match a physical model at all levels except the
lowest frequency offset.

 Ring Oscillator VCO

2-41

The most likely cause for a result such as this is that the resolution bandwidth used to make the
measurement was too large to produce an accurate measurement at the lowest frequency offset, 30
kHz in this case. Even if the carrier was outside the passband of the measurement filter, the carrier
energy passed through the limited stopband rejection of the measurement filter was much larger
than the energy in the passband. In this case, a set of parameter values that fit best to the data at
higher frequency offsets is likely to produce a more accurate model.

Version History
Introduced in R2021a

See Also
Loop Filter | PFD | VCO Testbench | VCO

2 Blocks: PLL

2-42

Fractional N PLL with Accumulator
Frequency synthesizer with accumulator based fractional N PLL architecture

Libraries:
Mixed-Signal Blockset / PLL / Architectures

Description
The Fractional N PLL with Accumulator reference architecture uses a Fractional Clock Divider with
Accumulator block as the frequency divider in a PLL system. The frequency divider divides the
frequency of the VCO output signal by a fractional value to make it comparable to a PFD reference
signal frequency.

Ports
Input

clk in — Input clock signal
scalar

Input clock signal, specified as a scalar. The signal at the clk in port is used as the reference signal
for the PFD block in a PLL system.
Data Types: double

Output

clk out — Output clock signal
scalar

Output clock signal, specified as a scalar. The signal at the clk out port is the output of the VCO
block in a PLL system.
Data Types: double

 Fractional N PLL with Accumulator

2-43

Parameters
Enable increased buffer size — Enable increased buffer size
button

Select to enable increased buffer size during the simulation. This increases the buffer size of all the
building blocks in the PLL model that belong to the Mixed-Signal Blockset/PLL/Building Blocks
Simulink library. The building blocks are PFD, Charge Pump, Loop Filter, VCO, and Fractional Clock
Divider with Accumulator. By default, this option is deselected.

Buffer size for loop filter — Buffer size for loop filter
1000 (default) | positive integer scalar

Buffer size for the loop filter, specified as a positive integer scalar. This sets the number of extra
buffer samples available during the simulation to the Convert Sample Time subsystem inside the loop
filter.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size for loop filter to a large enough
value so that the input buffer contains all the input samples required.

Dependencies

This parameter is only available when the Enable increased buffer size option is selected.

Programmatic Use

• Use get_param(gcb,'NBufferFilter') to view the current value of Buffer size for loop
filter.

• Use set_param(gcb,'NBufferFilter',value) to set Buffer size for loop filter to a specific
value.

Buffer size for PFD, charge pump, VCO, prescaler — Buffer size for PFD, charge pump, VCO, and
prescaler
10 (default) | positive integer scalar

Buffer size for the PFD, charge pump, VCO, and prescaler, specified as a positive integer scalar. This
sets the buffer size of the PFD, Charge Pump, VCO, and Fractional Clock Divider with Accumulator
blocks inside the PLL model.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size for PFD, charge pump, VCO,
prescaler to a large enough value so that the input buffer contains all the input samples required.

Dependencies

This parameter is only available when the Enable increased buffer size option is selected.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size for PFD, charge
pump, VCO, prescaler.

• Use set_param(gcb,'NBuffer',value) to set Buffer size for PFD, charge pump, VCO,
prescaler to a specific value.

2 Blocks: PLL

2-44

PFD

Configuration

Deadband compensation (s) — Delay added for active output near zero phase offset
40e-12 (default) | positive real scalar

Delay added for active output near zero phase offset, specified as a positive real scalar in seconds.
Deadband is the phase offset band near zero phase offset for which the PFD output is negligible.
Programmatic Use

• Use get_param(gcb,'DeadbandCompensation') to view the current value of Deadband
compensation (s).

• Use set_param(gcb,'DeadbandCompensation',value) to set Deadband compensation (s)
to a specific value.

Data Types: double

Impairments

Enable impairments — Add circuit impairments to simulation
off (default) | on

Select to add circuit impairments such as rise/fall time and propagation delay to simulation. By
default, this option is deselected.

Output step size calculation — Determine how output step size is calculated
Default (default) | Advanced

Determine how output step size is calculated:

• Select Default to calculate output step size from rise/fall time. Output step size (ΔT) is given by

ΔT = Rise/fall time 2

6 · 0.22 .

• Select Advanced to calculate output step size from maximum frequency of interest. Output step
size (ΔT) is given by ΔT = Rise/fall time

6 · Maximum frequency of interest.

Dependencies

To enable this parameter, select Enable Impairments in the PFD tab.

Maximum frequency of interest (Hz) — Maximum frequency of interest at output
10e9 (default) | positive real scalar

Maximum frequency of interest at the output, specified as a positive real scalar in Hz.
Dependencies

To enable this parameter, select Enable Impairments in the PFD tab and choose Advanced for
Output step size calculation.
Programmatic Use

• Use get_param(gcb,'MaxFreqInterest') to view the current value of Maximum frequency
of interest (Hz).

 Fractional N PLL with Accumulator

2-45

• Use set_param(gcb,'MaxFreqInterest',value) to set Maximum frequency of interest
(Hz) to a specific value.

Data Types: double

Rise/fall time (s) — 20% – 80% rise/fall time for up output port of PFD
3e-11 (default) | positive real scalar

20% – 80% rise/fall time for the up output port of the PFD, specified as a positive real scalar in
seconds.
Dependencies

To enable this parameter, select Enable Impairments in the PFD tab.
Programmatic Use

• Use get_param(gcb,'RiseFallTime') to view the current value of Rise/fall time (s).
• Use set_param(gcb,'RiseFallTime',value) to set Rise/fall time (s) to a specific value.

Data Types: double

Propagation Delay (s) — Delay from input port to output port of PFD
50e-12 (default) | positive real scalar

Delay from the input port to output port of the PFD, specified as a positive real scalar in seconds.
Dependencies

To enable this parameter, select Enable Impairments in the PFD tab.
Programmatic Use

• Use get_param(gcb,'PropDelay') to view the current value of Propagation Delay (s).
• Use set_param(gcb,'PropDelay',value) to set Propagation Delay (s) to a specific value.

Data Types: double

Charge pump

Configuration

Output current (A) — Design output current
1e-3 (default) | positive real scalar

Full scale magnitude of design output current, specified as a positive real scalar in amperes. This
parameter is also reported as Charge pump current in the Loop Filter tab and is used to
automatically calculate the filter component values of the loop filter.
Programmatic Use

• Use get_param(gcb,'OutputCurrent') to view the current value of Output current (A).
• Use set_param(gcb,'OutputCurrent',value) to set Output current (A) to a specific value.

Data Types: double

Input threshold (V) — Logic switching threshold at input ports
0.5 (default) | real scalar

2 Blocks: PLL

2-46

Logic switching threshold at input ports, specified as a real scalar in volts.

Programmatic Use

• Use get_param(gcb,'InputThreshold') to view the current value of Input threshold (V).
• Use set_param(gcb,'InputThreshold',value) to set Input threshold (V) to a specific

value.

Data Types: double

Impairments

Enable current impairments — Add current impairments to simulation
off (default) | on

Select to add current impairments such as current imbalance and leakage current to simulation. By
default, this option is deselected.

Current imbalance (A) — Difference between full scale positive and negative current
1e-7 (default) | positive real scalar

Difference between full scale positive and negative current, specified as a positive real scalar in
amperes.

Dependencies

To enable this parameter, select Enable current impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'CurrentImbalance') to view the current value of Current imbalance
(A).

• Use set_param(gcb,'CurrentImbalance',value) to set Current imbalance (A) to a
specific value.

Data Types: double

Leakage current (A) — Output current without any input
1e-8 (default) | nonnegative real scalar

Output current when both inputs are at logic zero, specified as a nonnegative real scalar in amperes.

Dependencies

To enable this parameter, select Enable current impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'LeakageCurrent') to view the current value of Leakage current (A).
• Use set_param(gcb,'LeakageCurrent',value) to set Leakage current (A) to a specific

value.

Data Types: double

Enable timing impairments — Add timing impairments to simulation
off (default) | on

 Fractional N PLL with Accumulator

2-47

Select to add timing impairments such as rise/fall time and propagation delay to simulation. By
default, this option is deselected.

Output step size calculation — Determine how output step size is calculated
Default (default) | Advanced

Determine how output step size is calculated:

• Select Default to calculate output step size from rise/fall time. Output step size (ΔT) is given by

ΔT = Rise/fall time 2

6 · 0.22 .

• Select Advanced to calculate output step size from maximum frequency of interest. Output step
size (ΔT) is given by ΔT = Rise/fall time

6 · Maximum frequency of interest.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge Pump tab.

Maximum frequency of interest (Hz) — Maximum frequency of interest at output
10e9 (default) | positive real scalar

Maximum frequency of interest at the output, specified as a positive real scalar in Hz.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge Pump tab and choose
Advanced for Output step size calculation.

Programmatic Use

• Use get_param(gcb,'MaxFreqInterestCp') to view the current value of Maximum
frequency of interest (Hz).

• Use set_param(gcb,'MaxFreqInterestCp',value) to set Maximum frequency of interest
(Hz) to a specific value.

Data Types: double

Up

Rise/fall time (s) — 20% – 80% rise/fall time for up input port
5e-9 (default) | positive real scalar

20% – 80% rise/fall time for the up input port of the charge pump, specified as a positive real scalar
in seconds.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'RiseFallUp') to view the current value of Up Rise/fall time (s).
• Use set_param(gcb,'RiseFallUp',value) to set Up Rise/fall time (s) to a specific value.

Data Types: double

2 Blocks: PLL

2-48

Propagation delay (s) — Total propagation delay from up input port to output port of charge pump
6e-9 (default) | positive real scalar

Total propagation delay from the up input port to output port of the charge pump, specified as a
positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'PropDelayUp') to view the current value of Up Propagation delay (s).
• Use set_param(gcb,'PropDelayUp',value) to set Up Propagation delay (s) to a specific

value.

Data Types: double

Down

Rise/fall time — 20% – 80% rise/fall time for down input port
2e-9 (default) | scalar

20% – 80% rise/fall time for down input port of charge pump.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'RiseFallDown') to view the current value of Down Rise/fall time (s).
• Use set_param(gcb,'RiseFallDown',value) to set Down Rise/fall time (s) to a specific

value.

Data Types: double

Propagation delay (s) — Total propagation delay from up input port to output port of charge pump
4e-9 (default) | positive real scalar

Total propagation delay from the up input port to output port of the charge pump, specified as a
positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'PropDelayUp') to view the current value of Down Propagation delay
(s).

• Use set_param(gcb,'PropDelayUp',value) to set Down Propagation delay (s) to a
specific value.

Data Types: double

 Fractional N PLL with Accumulator

2-49

VCO

Specify using — Define how VCO output frequency is specified
Voltage sensitivity (default) | Output frequency vs. control voltage

Define how VCO output frequency is specified:

• Select Voltage sensitivity to specify output frequency from Voltage sensitivity (Hz/V) and
Free running frequency (Hz).

• Select Output frequency vs. control voltage to interpolate output frequency from
Control voltage (V) vector versus Output frequency (Hz) vector.

Programmatic Use

• Use set_param(gcb,'SpecifyUsing','Voltage sensitivity') to set Specify using to
Voltage sensitivity.

• Use set_param(gcb,'SpecifyUsing', 'Output frequency vs. control voltage') to
set Specify using to Output frequency vs. control voltage.

Voltage sensitivity (Hz/V) — Measure of change in output frequency of VCO
100e6 (default) | positive real scalar

Measure of change in output frequency for input voltage change, specified as a positive real scalar
with units in Hz/V. This parameter is also reported as VCO voltage sensitivity in the Loop Filter tab
and is used to automatically calculate the filter component values of the loop filter.

Dependencies

To enable this parameter, select Voltage sensitivity in Specify using in the VCO tab.

Programmatic Use

• Use get_param(gcb,'Kvco') to view the current Voltage sensitivity (Hz/V) value.
• Use set_param(gcb,'Kvco',value) to set Voltage sensitivity (Hz/V) to a specific value.

Data Types: double

Free running frequency (Hz) — VCO output frequency without control voltage
1.8e9 (default) | positive real scalar

Frequency of the VCO without any control voltage input (0 V), or the quiescent frequency, specified
as a positive real scalar in Hz.

Dependencies

To enable this parameter, select Voltage sensitivity in Specify using in the VCO tab.

Programmatic Use

• Use get_param(gcb,'Fo') to view current Free running frequency (Hz) value.
• Use set_param(gcb,'Fo',value) to set Free running frequency (Hz) to a specific value.

Data Types: double

Control voltage (V) — Control voltage values
[-5 0 5] (default) | real valued vector

2 Blocks: PLL

2-50

Control voltage values of the VCO, specified as a real valued vector in volts.

Dependencies

To enable this parameter, select Output frequency vs. control voltage in Specify using in
the VCO tab.

Programmatic Use

• Use get_param(gcb,'ControlVoltage') to view current Control voltage (V) value.
• Use set_param(gcb,'ControlVoltage',value) to set Control voltage (V) to a specific

value.

Data Types: double

Output frequency (Hz) — VCO output frequency values
[2e9 2.5e9 3e9] (default) | real valued vector

Output frequency of the values of the VCO, corresponding to the Control voltage (V) vector,
specified in Hz.

Dependencies

To enable this parameter, select Output frequency vs. control voltage in Specify using in
the VCO tab.

Programmatic Use

• Use get_param(gcb,'OutputFrequency') to view current Output frequency (Hz) value.
• Use set_param(gcb,'OutputFrequency',value) to set Output frequency (Hz) to a specific

value.

Data Types: double

Output amplitude gain — Ratio of VCO output voltage to input voltage
1 (default) | positive real scalar

Ratio of VCO output voltage to input voltage, specified as a positive real scalar. The input voltage has
a nontunable value of 1 V.

Programmatic Use

• Use get_param(gcb,'Amplitude') to view current Output amplitude gain value.
• Use set_param(gcb,'Amplitude',value) to set Output amplitude gain to a specific value.

Data Types: double

Impairment

Add Phase-noise — Add phase noise as function of frequency
off (default) | on

Select to introduce phase noise as a function of frequency to the VCO. By default, this option is
deselected.

Phase noise frequency offset (Hz) — Frequency offsets of phase noise from carrier frequency
[10e3 100e3 1e6 3e6 10e6] (default) | real valued vector

 Fractional N PLL with Accumulator

2-51

Frequency offsets of the phase noise from the carrier frequency, specified as a real valued vector in
Hz.

Dependencies

To enable this parameter, select Add Phase-noise in the VCO tab.

Programmatic Use

• Use get_param(gcb,'Foffset') to view the current Phase noise frequency offset (Hz)
metric.

• Use set_param(gcb,'Foffset',value) to set Phase noise frequency offset (Hz) to a
specific metric.

Data Types: double

Phase noise level (dBc/Hz) — Phase noise power at specified frequency offsets relative to the carrier
[-77 -108 -134 -145 -154] (default) | real valued vector

Real valued vector specifying the phase noise power in a 1 Hz bandwidth centered at the specified
frequency offsets relative to the carrier. The value is specified in dBc/Hz.

Dependencies

To enable this parameter, select Add Phase-noise in the VCO tab.

Programmatic Use

• Use get_param(gcb,'PhaseNoise') to view the current Phase noise level (dBc/Hz) metric.
• Use set_param(gcb,'PhaseNoise',value) to set Phase noise level (dBc/Hz) to a specific

metric.

Data Types: double

Prescaler

Fractional clock divider value — Value by which the clock divider divides the input frequency
70.20 (default) | positive real scalar

Value by which the clock divider divides the input frequency, specified as a positive real scalar.

Programmatic Use

• Use get_param(gcb,'N') to view the current value of Fractional clock divider value.
• Use set_param(gcb,'N',value) to set Fractional clock divider value to a specific value.

Min clock divider value — Minimum value by which clock divider can divide input frequency
70 (default) | positive real scalar

Minimum value by which the clock divider can divide input frequency, specified as a positive real
scalar. This parameter is also reported in the Loop Filter tab and is used to automatically calculate
the filter component values of the loop filter.

Programmatic Use

• Use get_param(gcb,'Nmin') to view the current value of Min clock divider value.

2 Blocks: PLL

2-52

• Use set_param(gcb,'Nmin',value) to set Min clock divider value to a specific value.

Loop Filter

Filter component values — Determines how filter components are computed
Automatic (default) | Manual

Select how filter components for the loop filter are computed:

• Select Automatic to automatically compute filter components from system specifications.
Resistance and capacitance edit boxes in the Loop Filter tab are not editable if this option is
selected. Rather, the filter component values are calculated from Loop bandwidth (Hz), Phase
margin (degrees), VCO voltage sensitivity, Charge pump current, and Min clock divider
value. By default, this option is selected.

• Select Manual to manually enter the resistance and capacitance values to design a customized
loop filter.

Loop bandwidth (Hz) — Frequency at which magnitude of open loop transfer function becomes 1
0.5e6 (default) | positive real scalar

Frequency at which the magnitude of the open loop transfer function becomes 1, specified as a
positive real scalar in Hz. Lower values of Loop bandwidth (Hz) result in reduced phase noise and
reference spurs at the expense of longer lock time and less phase margin.

Dependencies

This parameter is only available when Automatic is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'Fc') to view the current value of Loop bandwidth (Hz).
• Use set_param(gcb,'Fc',value) to set Loop bandwidth (Hz) to a specific value.

Phase margin (degrees) — Phase of open loop transfer function at loop bandwidth subtracted from
180°
45 (default) | positive real scalar

Phase of the open loop transfer function at the loop bandwidth subtracted from 180°, specified as a
positive real scalar in degrees. For optimum lock time, select a phase margin between 40° and 55°.

Dependencies

This parameter is only available when Automatic is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'Phi') to view the current value of Phase margin (degrees).
• Use set_param(gcb,'Phi',value) to set Phase margin (degrees) to a specific value.

Data Types: double

Loop filter type — Order of the loop filter
3rd Order Passive (default) | 2nd Order Passive | 4th Order Passive

 Fractional N PLL with Accumulator

2-53

Order of the loop filter. Applies a second-, third-, or fourth-order passive RC loop filter in the PLL
system.

C1 (F) — Capacitance 1
3e-14 (default) | positive real scalar

Capacitor value C1, specified as a positive real scalar in farad.

Dependencies

This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C1') to view the current value of C1 (F).
• Use set_param(gcb,'C1',value) to set C1 (F) to a specific value.

Data Types: double

C2 (F) — Capacitance 2
3.3e-13 (default) | positive real scalar

Capacitor value C2, specified as a positive real scalar in farad.

Dependencies

This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C2') to view the current value of C2 (F).
• Use set_param(gcb,'C2',value) to set C2 (F) to a specific value.

Data Types: double

C3 (F) — Capacitance 3
2.15e-15 (default) | positive real scalar

Capacitor value C3, specified as a positive real scalar in farad.

Dependencies

• To enable this parameter, select 3rd Order Passive or 4th Order Passive in Loop filter
type.

• This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C3') to view the current value of C3 (F).
• Use set_param(gcb,'C3',value) to set C3 (F) to a specific value.

Data Types: double

2 Blocks: PLL

2-54

C4 (F) — Capacitance 4
1e-12 (default) | positive real scalar

Capacitor value C4, specified as a positive real scalar in farad.

Dependencies

• To enable this parameter, select 4th Order Passive in Loop filter type.
• This parameter is only editable when Manual is selected for the Filter Component values

parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C4') to view the current value of C4 (F).
• Use set_param(gcb,'C4',value) to set C4 (F) to a specific value.

Data Types: double

R2 (ohms) — Resistance 2
2.33e+06 (default) | positive real scalar

Resistor value R2, specified as a positive real scalar in ohms.

Dependencies

This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'R2') to view the current value of R2 (ohms).
• Use set_param(gcb,'R2',value) to set R2 (ohms) to a specific value.

Data Types: double

R3 (ohms) — Resistance 3
2.98e+07 (default) | positive real scalar

Resistor value R3, specified as a positive real scalar in ohms.

Dependencies

• To enable this parameter, select 3rd Order Passive or 4th Order Passive in Loop filter
type.

• This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'R3') to view the current value of R3 (ohms).
• Use set_param(gcb,'R3',value) to set R3 (ohms) to a specific value.

Data Types: double

R4 (ohms) — Resistance 4
12e3 (default) | positive real scalar

 Fractional N PLL with Accumulator

2-55

Resistor value R4, specified as a positive real scalar in ohms.

Dependencies

• To enable this parameter, select 4th Order Passive in Loop filter type.
• This parameter is only editable when Manual is selected for the Filter Component values

parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'R4') to view the current value of R4 (ohms).
• Use set_param(gcb,'R4',value) to set R4 (ohms) to a specific value.

Data Types: double

Enable impairments — Add circuit impairments to simulation
off (default) | on

Select to add circuit impairments such as operating temperature to determine thermal noise to
simulation. By default, this option is deselected.

Operating temperature (℃) — Temperature to determine the level of thermal noise
30 (default) | real scalar

Temperature of the resistor, specified as a real scalar in ℃. Operating temperature determines the
level of thermal (Johnson) noise.

Dependencies

To enable this parameter, select Enable impairments in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'Temperature') to view the current value of Operating temperature.
• Use set_param(gcb,'Temperature',value) to set Operating temperature to a specific

value.

Data Types: double

Export Loop Filter Component Values — Export loop filter component values
button

Click to export loop filter component values to a spreadsheet (XLS file) or as comma-separated values
(CSV file).

Probe

PFD up and PFD down (pfd_up and pfd_down) — Select to probe PFD outputs
off (default) | on

Select to probe the PFD output wires (pfd_up and pfd_down) to view the response of the PFD.

Charge pump output (cp_out) — Select to probe charge pump output
off (default) | on

Select to probe the charge pump output wire (cp_out) to view the response of the Charge Pump.

2 Blocks: PLL

2-56

Loop filter output (lf_out) — Select to probe loop filter output
off (default) | on

Select to probe loop filter output wire (lf_out) to view the response of the Loop Filter. The loop filter
output provides the control voltage to the VCO.

Prescaler output (ps_out) — Select to probe prescaler output
off (default) | on

Select to probe the prescaler output wire (ps_out) to view the response of the Fractional Clock
Divider with Accumulator.

Analysis

Open Loop Analysis — Plot the presimulation open loop analysis
on (default) | off

Select to plot the gain margin and phase margin of the PLL system before simulation. By default, this
option is selected.

Closed Loop Analysis — Plot the presimulation closed loop analysis
off (default) | on

Select to plot the pole-zero map, loop bandwidth, step response, and impulse response of the PLL
system before simulation. You must have a license to Control System Toolbox™ to plot the step
response and impulse response of the PLL system. By default, this option is deselected.

Plot Loop Dynamics — Plot loop dynamics of PLL system
button

Click to plot the presimulation loop dynamics of the PLL system.

Version History
Introduced in R2019a

See Also
PFD | Charge Pump | Loop Filter | Fractional Clock Divider with Accumulator | VCO

 Fractional N PLL with Accumulator

2-57

Fractional N PLL with Delta Sigma Modulator
Frequency synthesizer with delta sigma modulator based fractional N PLL architecture

Libraries:
Mixed-Signal Blockset / PLL / Architectures

Description
The Fractional N PLL with Delta Sigma Modulator reference architecture uses a Fractional Clock
Divider with DSM block as the frequency divider in a PLL system. The frequency divider divides the
frequency of the VCO output signal by a fractional value using the delta sigma modulation technique
to make it comparable to a PFD reference signal frequency.

Ports
Input

clk in — Input clock signal
scalar

Input clock signal, specified as a scalar. The signal at the clk in port is used as the reference signal
for the PFD block in a PLL system.
Data Types: double

Output

clk out — Output clock signal
scalar

Output clock signal, specified as a scalar. The signal at the clk out port is the output of the VCO
block in a PLL system.
Data Types: double

2 Blocks: PLL

2-58

Parameters
Enable increased buffer size — Enable increased buffer size
button

Select to enable increased buffer size during the simulation. This increases the buffer size of all the
building blocks in the PLL model that belong to the Mixed-Signal Blockset/PLL/Building Blocks
Simulink library. The building blocks are PFD, Charge Pump, Loop Filter, VCO, and Fractional Clock
Divider with DSM. By default, this option is deselected.

Buffer size for loop filter — Buffer size for loop filter
1000 (default) | positive integer scalar

Buffer size for the loop filter, specified as a positive integer scalar. This sets the number of extra
buffer samples available during the simulation to the Convert Sample Time subsystem inside the loop
filter.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size for loop filter to a large enough
value so that the input buffer contains all the input samples required.

Dependencies

This parameter is only available when the Enable increased buffer size option is selected.

Programmatic Use

• Use get_param(gcb,'NBufferFilter') to view the current value of Buffer size for loop
filter.

• Use set_param(gcb,'NBufferFilter',value) to set Buffer size for loop filter to a specific
value.

Buffer size for PFD, charge pump, VCO, prescaler — Buffer size for PFD, charge pump, VCO, and
prescaler
10 (default) | positive integer scalar

Buffer size for the PFD, charge pump, VCO, and prescaler, specified as a positive integer scalar. This
sets the buffer size of the PFD, Charge Pump, VCO, and Fractional Clock Divider with DSM blocks
inside the PLL model.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size for PFD, charge pump, VCO,
prescaler to a large enough value so that the input buffer contains all the input samples required.

Dependencies

This parameter is only available when the Enable increased buffer size option is selected.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size for PFD, charge
pump, VCO, prescaler.

• Use set_param(gcb,'NBuffer',value) to set Buffer size for PFD, charge pump, VCO,
prescaler to a specific value.

 Fractional N PLL with Delta Sigma Modulator

2-59

PFD

Configuration

Deadband compensation (s) — Delay added for active output near zero phase offset
40e-12 (default) | positive real scalar

Delay added for active output near zero phase offset, specified as a positive real scalar in seconds.
Deadband is the phase offset band near zero phase offset for which the PFD output is negligible.
Programmatic Use

• Use get_param(gcb,'DeadbandCompensation') to view the current value of Deadband
compensation (s).

• Use set_param(gcb,'DeadbandCompensation',value) to set Deadband compensation (s)
to a specific value.

Data Types: double

Impairments

Enable impairments — Add circuit impairments to simulation
off (default) | on

Select to add circuit impairments such as rise/fall time and propagation delay to simulation. By
default, this option is deselected.

Output step size calculation — Determine how output step size is calculated
Default (default) | Advanced

Determine how output step size is calculated:

• Select Default to calculate output step size from rise/fall time. Output step size (ΔT) is given by

ΔT = Rise/fall time 2

6 · 0.22 .

• Select Advanced to calculate output step size from maximum frequency of interest. Output step
size (ΔT) is given by ΔT = Rise/fall time

6 · Maximum frequency of interest.

Dependencies

To enable this parameter, select Enable Impairments in the PFD tab.

Maximum frequency of interest (Hz) — Maximum frequency of interest at output
10e9 (default) | positive real scalar

Maximum frequency of interest at the output, specified as a positive real scalar in Hz.
Dependencies

To enable this parameter, select Enable Impairments in the PFD tab and choose Advanced for
Output step size calculation.
Programmatic Use

• Use get_param(gcb,'MaxFreqInterest') to view the current value of Maximum frequency
of interest (Hz).

2 Blocks: PLL

2-60

• Use set_param(gcb,'MaxFreqInterest',value) to set Maximum frequency of interest
(Hz) to a specific value.

Data Types: double

Rise/fall time (s) — 20% – 80% rise/fall time for up output port of PFD
3e-11 (default) | positive real scalar

20% – 80% rise/fall time for the up output port of the PFD, specified as a positive real scalar in
seconds.
Dependencies

To enable this parameter, select Enable Impairments in the PFD tab.
Programmatic Use

• Use get_param(gcb,'RiseFallTime') to view the current value of Rise/fall time (s).
• Use set_param(gcb,'RiseFallTime',value) to set Rise/fall time (s) to a specific value.

Data Types: double

Propagation Delay (s) — Delay from input port to output port of PFD
50e-12 (default) | positive real scalar

Delay from the input port to output port of the PFD, specified as a positive real scalar in seconds.
Dependencies

To enable this parameter, select Enable Impairments in the PFD tab.
Programmatic Use

• Use get_param(gcb,'PropDelay') to view the current value of Propagation Delay (s).
• Use set_param(gcb,'PropDelay',value) to set Propagation Delay (s) to a specific value.

Data Types: double

Charge pump

Configuration

Output current (A) — Design output current
1e-3 (default) | positive real scalar

Full scale magnitude of design output current, specified as a positive real scalar in amperes. This
parameter is also reported as Charge pump current in the Loop Filter tab and is used to
automatically calculate the filter component values of the loop filter.
Programmatic Use

• Use get_param(gcb,'OutputCurrent') to view the current value of Output current (A).
• Use set_param(gcb,'OutputCurrent',value) to set Output current (A) to a specific value.

Data Types: double

Input threshold (V) — Logic switching threshold at input ports
0.5 (default) | real scalar

 Fractional N PLL with Delta Sigma Modulator

2-61

Logic switching threshold at input ports, specified as a real scalar in volts.

Programmatic Use

• Use get_param(gcb,'InputThreshold') to view the current value of Input threshold (V).
• Use set_param(gcb,'InputThreshold',value) to set Input threshold (V) to a specific

value.

Data Types: double

Impairments

Enable current impairments — Add current impairments to simulation
off (default) | on

Select to add current impairments such as current imbalance and leakage current to simulation. By
default, this option is deselected.

Current imbalance (A) — Difference between full scale positive and negative current
1e-7 (default) | positive real scalar

Difference between full scale positive and negative current, specified as a positive real scalar in
amperes.

Dependencies

To enable this parameter, select Enable current impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'CurrentImbalance') to view the current value of Current imbalance
(A).

• Use set_param(gcb,'CurrentImbalance',value) to set Current imbalance (A) to a
specific value.

Data Types: double

Leakage current (A) — Output current without any input
1e-8 (default) | nonnegative real scalar

Output current when both inputs are at logic zero, specified as a nonnegative real scalar in amperes.

Dependencies

To enable this parameter, select Enable current impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'LeakageCurrent') to view the current value of Leakage current (A).
• Use set_param(gcb,'LeakageCurrent',value) to set Leakage current (A) to a specific

value.

Data Types: double

Enable timing impairments — Add timing impairments to simulation
off (default) | on

2 Blocks: PLL

2-62

Select to add timing impairments such as rise/fall time and propagation delay to simulation. By
default, this option is deselected.

Output step size calculation — Determine how output step size is calculated
Default (default) | Advanced

Determine how output step size is calculated:

• Select Default to calculate output step size from rise/fall time. Output step size (ΔT) is given by

ΔT = Rise/fall time 2

6 · 0.22 .

• Select Advanced to calculate output step size from maximum frequency of interest. Output step
size (ΔT) is given by ΔT = Rise/fall time

6 · Maximum frequency of interest.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge Pump tab.

Maximum frequency of interest (Hz) — Maximum frequency of interest at output
10e9 (default) | positive real scalar

Maximum frequency of interest at the output, specified as a positive real scalar in Hz.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge Pump tab and choose
Advanced for Output step size calculation.

Programmatic Use

• Use get_param(gcb,'MaxFreqInterestCp') to view the current value of Maximum
frequency of interest (Hz).

• Use set_param(gcb,'MaxFreqInterestCp',value) to set Maximum frequency of interest
(Hz) to a specific value.

Data Types: double

Up

Rise/fall time (s) — 20% – 80% rise/fall time for up input port
5e-9 (default) | positive real scalar

20% – 80% rise/fall time for the up input port of the charge pump, specified as a positive real scalar
in seconds.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'RiseFallUp') to view the current value of Up Rise/fall time (s).
• Use set_param(gcb,'RiseFallUp',value) to set Up Rise/fall time (s) to a specific value.

Data Types: double

 Fractional N PLL with Delta Sigma Modulator

2-63

Propagation delay (s) — Total propagation delay from up input port to output port of charge pump
6e-9 (default) | positive real scalar

Total propagation delay from the up input port to output port of the charge pump, specified as a
positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'PropDelayUp') to view the current value of Up Propagation delay (s).
• Use set_param(gcb,'PropDelayUp',value) to set Up Propagation delay (s) to a specific

value.

Data Types: double

Down

Rise/fall time — 20% – 80% rise/fall time for down input port
2e-9 (default) | scalar

20% – 80% rise/fall time for down input port of charge pump.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'RiseFallDown') to view the current value of Down Rise/fall time (s).
• Use set_param(gcb,'RiseFallDown',value) to set Down Rise/fall time (s) to a specific

value.

Data Types: double

Propagation delay (s) — Total propagation delay from up input port to output port of charge pump
4e-9 (default) | positive real scalar

Total propagation delay from the up input port to output port of the charge pump, specified as a
positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'PropDelayUp') to view the current value of Down Propagation delay
(s).

• Use set_param(gcb,'PropDelayUp',value) to set Down Propagation delay (s) to a
specific value.

Data Types: double

2 Blocks: PLL

2-64

VCO

Specify using — Define how VCO output frequency is specified
Voltage sensitivity (default) | Output frequency vs. control voltage

Define how VCO output frequency is specified:

• Select Voltage sensitivity to specify output frequency from Voltage sensitivity (Hz/V) and
Free running frequency (Hz).

• Select Output frequency vs. control voltage to interpolate output frequency from
Control voltage (V) vector versus Output frequency (Hz) vector.

Programmatic Use

• Use set_param(gcb,'SpecifyUsing','Voltage sensitivity') to set Specify using to
Voltage sensitivity.

• Use set_param(gcb,'SpecifyUsing', 'Output frequency vs. control voltage') to
set Specify using to Output frequency vs. control voltage.

Voltage sensitivity (Hz/V) — Measure of change in output frequency of VCO
100e6 (default) | positive real scalar

Measure of change in output frequency for input voltage change, specified as a positive real scalar
with units in Hz/V. This parameter is also reported as VCO voltage sensitivity in the Loop Filter tab
and is used to automatically calculate the filter component values of the loop filter.

Dependencies

To enable this parameter, select Voltage sensitivity in Specify using in the VCO tab.

Programmatic Use

• Use get_param(gcb,'Kvco') to view the current Voltage sensitivity (Hz/V) value.
• Use set_param(gcb,'Kvco',value) to set Voltage sensitivity (Hz/V) to a specific value.

Data Types: double

Free running frequency (Hz) — VCO output frequency without control voltage
1.8e9 (default) | positive real scalar

Frequency of the VCO without any control voltage input (0 V), or the quiescent frequency, specified
as a positive real scalar in Hz.

Dependencies

To enable this parameter, select Voltage sensitivity in Specify using in the VCO tab.

Programmatic Use

• Use get_param(gcb,'Fo') to view current Free running frequency (Hz) value.
• Use set_param(gcb,'Fo',value) to set Free running frequency (Hz) to a specific value.

Data Types: double

Control voltage (V) — Control voltage values
[-5 0 5] (default) | real valued vector

 Fractional N PLL with Delta Sigma Modulator

2-65

Control voltage values of the VCO, specified as a real valued vector in volts.

Dependencies

To enable this parameter, select Output frequency vs. control voltage in Specify using in
the VCO tab.

Programmatic Use

• Use get_param(gcb,'ControlVoltage') to view current Control voltage (V) value.
• Use set_param(gcb,'ControlVoltage',value) to set Control voltage (V) to a specific

value.

Data Types: double

Output frequency (Hz) — VCO output frequency values
[2e9 2.5e9 3e9] (default) | real valued vector

Output frequency of the values of the VCO, corresponding to the Control voltage (V) vector,
specified in Hz.

Dependencies

To enable this parameter, select Output frequency vs. control voltage in Specify using in
the VCO tab.

Programmatic Use

• Use get_param(gcb,'OutputFrequency') to view current Output frequency (Hz) value.
• Use set_param(gcb,'OutputFrequency',value) to set Output frequency (Hz) to a specific

value.

Data Types: double

Output amplitude gain — Ratio of VCO output voltage to input voltage
1 (default) | positive real scalar

Ratio of VCO output voltage to input voltage, specified as a positive real scalar. The input voltage has
a nontunable value of 1 V.

Programmatic Use

• Use get_param(gcb,'Amplitude') to view current Output amplitude gain value.
• Use set_param(gcb,'Amplitude',value) to set Output amplitude gain to a specific value.

Data Types: double

Impairment

Add Phase-noise — Add phase noise as function of frequency
off (default) | on

Select to introduce phase noise as a function of frequency to the VCO. By default, this option is
deselected.

Phase noise frequency offset (Hz) — Frequency offsets of phase noise from carrier frequency
[10e3 100e3 1e6 3e6 10e6] (default) | real valued vector

2 Blocks: PLL

2-66

Frequency offsets of the phase noise from the carrier frequency, specified as a real valued vector in
Hz.

Dependencies

To enable this parameter, select Add Phase-noise in the VCO tab.

Programmatic Use

• Use get_param(gcb,'Foffset') to view the current Phase noise frequency offset (Hz)
metric.

• Use set_param(gcb,'Foffset',value) to set Phase noise frequency offset (Hz) to a
specific metric.

Data Types: double

Phase noise level (dBc/Hz) — Phase noise power at specified frequency offsets relative to the carrier
[-77 -108 -134 -145 -154] (default) | real valued vector

Real valued vector specifying the phase noise power in a 1 Hz bandwidth centered at the specified
frequency offsets relative to the carrier. The value is specified in dBc/Hz.

Dependencies

To enable this parameter, select Add Phase-noise in the VCO tab.

Programmatic Use

• Use get_param(gcb,'PhaseNoise') to view the current Phase noise level (dBc/Hz) metric.
• Use set_param(gcb,'PhaseNoise',value) to set Phase noise level (dBc/Hz) to a specific

metric.

Data Types: double

Prescaler

Fractional clock divider value — Value by which the clock divider divides the input frequency
70.20 (default) | positive real scalar

Value by which the clock divider divides the input frequency, specified as a positive real scalar.

Programmatic Use

• Use get_param(gcb,'N') to view the current value of Fractional clock divider value.
• Use set_param(gcb,'N',value) to set Fractional clock divider value to a specific value.

Delta Sigma Modulator order — Order of the Delta Sigma Modulator
3rd order (default) | 1st order | 2nd order | 4th order

The order of the delta sigma modulator. For more information, see Fractional Clock Divider with
DSM.

Programmatic Use

• Use get_param(gcb,'dsm') to view the current Delta Sigma Modulator order.
• Use set_param(gcb,'dsm',value) to set Delta Sigma Modulator order to a specific value.

 Fractional N PLL with Delta Sigma Modulator

2-67

Min clock divider value — Minimum value by which clock divider can divide input frequency
70 (default) | positive real scalar

Minimum value by which the clock divider can divide input frequency, specified as a positive real
scalar. This parameter is also reported in the Loop Filter tab and is used to automatically calculate
the filter component values of the loop filter.

Programmatic Use

• Use get_param(gcb,'Nmin') to view the current value of Min clock divider value.
• Use set_param(gcb,'Nmin',value) to set Min clock divider value to a specific value.

Loop Filter

Filter component values — Determines how filter components are computed
Automatic (default) | Manual

Select how filter components for the loop filter are computed:

• Select Automatic to automatically compute filter components from system specifications.
Resistance and capacitance edit boxes in the Loop Filter tab are not editable if this option is
selected. Rather, the filter component values are calculated from Loop bandwidth (Hz), Phase
margin (degrees), VCO voltage sensitivity, Charge pump current, and Min clock divider
value. By default, this option is selected.

• Select Manual to manually enter the resistance and capacitance values to design a customized
loop filter.

Loop bandwidth (Hz) — Frequency at which magnitude of open loop transfer function becomes 1
0.5e6 (default) | positive real scalar

Frequency at which the magnitude of the open loop transfer function becomes 1, specified as a
positive real scalar in Hz. Lower values of Loop bandwidth (Hz) result in reduced phase noise and
reference spurs at the expense of longer lock time and less phase margin.

Dependencies

This parameter is only available when Automatic is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'Fc') to view the current value of Loop bandwidth (Hz).
• Use set_param(gcb,'Fc',value) to set Loop bandwidth (Hz) to a specific value.

Phase margin (degrees) — Phase of open loop transfer function at loop bandwidth subtracted from
180°
45 (default) | positive real scalar

Phase of the open loop transfer function at the loop bandwidth subtracted from 180°, specified as a
positive real scalar in degrees. For optimum lock time, select a phase margin between 40° and 55°.

Dependencies

This parameter is only available when Automatic is selected for the Filter Component values
parameter in the Loop Filter tab.

2 Blocks: PLL

2-68

Programmatic Use

• Use get_param(gcb,'Phi') to view the current value of Phase margin (degrees).
• Use set_param(gcb,'Phi',value) to set Phase margin (degrees) to a specific value.

Data Types: double

Loop filter type — Order of the loop filter
3rd Order Passive (default) | 2nd Order Passive | 4th Order Passive

Order of the loop filter. Applies a second-, third-, or fourth-order passive RC loop filter in the PLL
system.

C1 (F) — Capacitance 1
3e-14 (default) | positive real scalar

Capacitor value C1, specified as a positive real scalar in farad.

Dependencies

This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C1') to view the current value of C1 (F).
• Use set_param(gcb,'C1',value) to set C1 (F) to a specific value.

Data Types: double

C2 (F) — Capacitance 2
3.3e-13 (default) | positive real scalar

Capacitor value C2, specified as a positive real scalar in farad.

Dependencies

This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C2') to view the current value of C2 (F).
• Use set_param(gcb,'C2',value) to set C2 (F) to a specific value.

Data Types: double

C3 (F) — Capacitance 3
2.15e-15 (default) | positive real scalar

Capacitor value C3, specified as a positive real scalar in farad.

Dependencies

• To enable this parameter, select 3rd Order Passive or 4th Order Passive in Loop filter
type.

 Fractional N PLL with Delta Sigma Modulator

2-69

• This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C3') to view the current value of C3 (F).
• Use set_param(gcb,'C3',value) to set C3 (F) to a specific value.

Data Types: double

C4 (F) — Capacitance 4
1e-12 (default) | positive real scalar

Capacitor value C4, specified as a positive real scalar in farad.

Dependencies

• To enable this parameter, select 4th Order Passive in Loop filter type.
• This parameter is only editable when Manual is selected for the Filter Component values

parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C4') to view the current value of C4 (F).
• Use set_param(gcb,'C4',value) to set C4 (F) to a specific value.

Data Types: double

R2 (ohms) — Resistance 2
2.33e+06 (default) | positive real scalar

Resistor value R2, specified as a positive real scalar in ohms.

Dependencies

This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'R2') to view the current value of R2 (ohms).
• Use set_param(gcb,'R2',value) to set R2 (ohms) to a specific value.

Data Types: double

R3 (ohms) — Resistance 3
2.98e+07 (default) | positive real scalar

Resistor value R3, specified as a positive real scalar in ohms.

Dependencies

• To enable this parameter, select 3rd Order Passive or 4th Order Passive in Loop filter
type.

• This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

2 Blocks: PLL

2-70

Programmatic Use

• Use get_param(gcb,'R3') to view the current value of R3 (ohms).
• Use set_param(gcb,'R3',value) to set R3 (ohms) to a specific value.

Data Types: double

R4 (ohms) — Resistance 4
12e3 (default) | positive real scalar

Resistor value R4, specified as a positive real scalar in ohms.

Dependencies

• To enable this parameter, select 4th Order Passive in Loop filter type.
• This parameter is only editable when Manual is selected for the Filter Component values

parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'R4') to view the current value of R4 (ohms).
• Use set_param(gcb,'R4',value) to set R4 (ohms) to a specific value.

Data Types: double

Enable impairments — Add circuit impairments to simulation
off (default) | on

Select to add circuit impairments such as operating temperature to determine thermal noise to
simulation. By default, this option is deselected.

Operating temperature (℃) — Temperature to determine the level of thermal noise
30 (default) | real scalar

Temperature of the resistor, specified as a real scalar in ℃. Operating temperature determines the
level of thermal (Johnson) noise.

Dependencies

To enable this parameter, select Enable impairments in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'Temperature') to view the current value of Operating temperature.
• Use set_param(gcb,'Temperature',value) to set Operating temperature to a specific

value.

Data Types: double

Export Loop Filter Component Values — Export loop filter component values
button

Click to export loop filter component values to a spreadsheet (XLS file) or as comma-separated values
(CSV file).

 Fractional N PLL with Delta Sigma Modulator

2-71

Probe

PFD up and PFD down (pfd_up and pfd_down) — Select to probe PFD outputs
off (default) | on

Select to probe the PFD output wires (pfd_up and pfd_down) to view the response of the PFD.

Charge pump output (cp_out) — Select to probe charge pump output
off (default) | on

Select to probe the charge pump output wire (cp_out) to view the response of the Charge Pump.

Loop filter output (lf_out) — Select to probe loop filter output
off (default) | on

Select to probe loop filter output wire (lf_out) to view the response of the Loop Filter. The loop filter
output provides the control voltage to the VCO.

Prescaler output (ps_out) — Select to probe prescaler output
off (default) | on

Select to probe the prescaler output wire (ps_out) to view the response of the Fractional Clock
Divider with Accumulator.

Analysis

Open Loop Analysis — Plot the presimulation open loop analysis
on (default) | off

Select to plot the gain margin and phase margin of the PLL system before simulation. By default, this
option is selected.

Closed Loop Analysis — Plot the presimulation closed loop analysis
off (default) | on

Select to plot the pole-zero map, loop bandwidth, step response, and impulse response of the PLL
system before simulation. You must have a license to Control System Toolbox to plot the step
response and impulse response of the PLL system. By default, this option is deselected.

Plot Loop Dynamics — Plot loop dynamics of PLL system
button

Click to plot the presimulation loop dynamics of the PLL system.

Version History
Introduced in R2019a

See Also
PFD | Charge Pump | Loop Filter | Fractional Clock Divider with DSM | VCO

2 Blocks: PLL

2-72

Integer N PLL with Dual Modulus Prescaler
Frequency synthesizer with dual modulus prescaler based integer N PLL architecture

Libraries:
Mixed-Signal Blockset / PLL / Architectures

Description
The Integer N PLL with Dual Modulus Prescaler reference architecture uses a Dual Modulus
Prescaler block as the frequency divider in a PLL system. The frequency divider divides the frequency
of the VCO output signal by an integer value to make it comparable to a PFD reference signal
frequency.

Ports
Input

clk in — Input clock signal
scalar

Input clock signal, specified as a scalar. The signal at the clk in port is used as the reference signal
for the PFD block in a PLL system.
Data Types: double

Output

clk out — Output clock signal
scalar

Output clock signal, specified as a scalar. The signal at the clk out port is the output of the VCO
block in a PLL system.
Data Types: double

 Integer N PLL with Dual Modulus Prescaler

2-73

Parameters
Enable increased buffer size — Enable increased buffer size
button

Select to enable increased buffer size during the simulation. This increases the buffer size of all the
building blocks in the PLL model that belong to the Mixed-Signal Blockset/PLL/Building Blocks
Simulink library. The building blocks are PFD, Charge Pump, Loop Filter, VCO, and Dual Modulus
Prescaler. By default, this option is deselected.

Buffer size for loop filter — Buffer size for loop filter
1000 (default) | positive integer scalar

Buffer size for the loop filter, specified as a positive integer scalar. This sets the number of extra
buffer samples available during the simulation to the Convert Sample Time subsystem inside the loop
filter.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size for loop filter to a large enough
value so that the input buffer contains all the input samples required.

Dependencies

This parameter is only available when the Enable increased buffer size option is selected.

Programmatic Use

• Use get_param(gcb,'NBufferFilter') to view the current value of Buffer size for loop
filter.

• Use set_param(gcb,'NBufferFilter',value) to set Buffer size for loop filter to a specific
value.

Buffer size for PFD, charge pump, VCO, prescaler — Buffer size for PFD, charge pump, VCO, and
prescaler
10 (default) | positive integer scalar

Buffer size for the PFD, charge pump, VCO, and prescaler, specified as a positive integer scalar. This
sets the buffer size of the PFD, Charge Pump, VCO, and Dual Modulus Prescaler blocks inside the
PLL model.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size for PFD, charge pump, VCO,
prescaler to a large enough value so that the input buffer contains all the input samples required.

Dependencies

This parameter is only available when the Enable increased buffer size option is selected.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size for PFD, charge
pump, VCO, prescaler.

• Use set_param(gcb,'NBuffer',value) to set Buffer size for PFD, charge pump, VCO,
prescaler to a specific value.

2 Blocks: PLL

2-74

PFD

Configuration

Deadband compensation (s) — Delay added for active output near zero phase offset
40e-12 (default) | positive real scalar

Delay added for active output near zero phase offset, specified as a positive real scalar in seconds.
Deadband is the phase offset band near zero phase offset for which the PFD output is negligible.
Programmatic Use

• Use get_param(gcb,'DeadbandCompensation') to view the current value of Deadband
compensation (s).

• Use set_param(gcb,'DeadbandCompensation',value) to set Deadband compensation (s)
to a specific value.

Data Types: double

Impairments

Enable impairments — Add circuit impairments to simulation
off (default) | on

Select to add circuit impairments such as rise/fall time and propagation delay to simulation. By
default, this option is deselected.

Output step size calculation — Determine how output step size is calculated
Default (default) | Advanced

Determine how output step size is calculated:

• Select Default to calculate output step size from rise/fall time. Output step size (ΔT) is given by

ΔT = Rise/fall time 2

6 · 0.22 .

• Select Advanced to calculate output step size from maximum frequency of interest. Output step
size (ΔT) is given by ΔT = Rise/fall time

6 · Maximum frequency of interest.

Dependencies

To enable this parameter, select Enable Impairments in the PFD tab.

Maximum frequency of interest (Hz) — Maximum frequency of interest at output
10e9 (default) | positive real scalar

Maximum frequency of interest at the output, specified as a positive real scalar in Hz.
Dependencies

To enable this parameter, select Enable Impairments in the PFD tab and choose Advanced for
Output step size calculation.
Programmatic Use

• Use get_param(gcb,'MaxFreqInterest') to view the current value of Maximum frequency
of interest (Hz).

 Integer N PLL with Dual Modulus Prescaler

2-75

• Use set_param(gcb,'MaxFreqInterest',value) to set Maximum frequency of interest
(Hz) to a specific value.

Data Types: double

Rise/fall time (s) — 20% – 80% rise/fall time for up output port of PFD
3e-11 (default) | positive real scalar

20% – 80% rise/fall time for the up output port of the PFD, specified as a positive real scalar in
seconds.
Dependencies

To enable this parameter, select Enable Impairments in the PFD tab.
Programmatic Use

• Use get_param(gcb,'RiseFallTime') to view the current value of Rise/fall time (s).
• Use set_param(gcb,'RiseFallTime',value) to set Rise/fall time (s) to a specific value.

Data Types: double

Propagation Delay (s) — Delay from input port to output port of PFD
50e-12 (default) | positive real scalar

Delay from the input port to output port of the PFD, specified as a positive real scalar in seconds.
Dependencies

To enable this parameter, select Enable Impairments in the PFD tab.
Programmatic Use

• Use get_param(gcb,'PropDelay') to view the current value of Propagation Delay (s).
• Use set_param(gcb,'PropDelay',value) to set Propagation Delay (s) to a specific value.

Data Types: double

Charge pump

Configuration

Output current (A) — Design output current
1e-3 (default) | positive real scalar

Full scale magnitude of design output current, specified as a positive real scalar in amperes. This
parameter is also reported as Charge pump current in the Loop Filter tab and is used to
automatically calculate the filter component values of the loop filter.
Programmatic Use

• Use get_param(gcb,'OutputCurrent') to view the current value of Output current (A).
• Use set_param(gcb,'OutputCurrent',value) to set Output current (A) to a specific value.

Data Types: double

Input threshold (V) — Logic switching threshold at input ports
0.5 (default) | real scalar

2 Blocks: PLL

2-76

Logic switching threshold at input ports, specified as a real scalar in volts.

Programmatic Use

• Use get_param(gcb,'InputThreshold') to view the current value of Input threshold (V).
• Use set_param(gcb,'InputThreshold',value) to set Input threshold (V) to a specific

value.

Data Types: double

Impairments

Enable current impairments — Add current impairments to simulation
off (default) | on

Select to add current impairments such as current imbalance and leakage current to simulation. By
default, this option is deselected.

Current imbalance (A) — Difference between full scale positive and negative current
1e-7 (default) | positive real scalar

Difference between full scale positive and negative current, specified as a positive real scalar in
amperes.

Dependencies

To enable this parameter, select Enable current impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'CurrentImbalance') to view the current value of Current imbalance
(A).

• Use set_param(gcb,'CurrentImbalance',value) to set Current imbalance (A) to a
specific value.

Data Types: double

Leakage current (A) — Output current without any input
1e-8 (default) | nonnegative real scalar

Output current when both inputs are at logic zero, specified as a nonnegative real scalar in amperes.

Dependencies

To enable this parameter, select Enable current impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'LeakageCurrent') to view the current value of Leakage current (A).
• Use set_param(gcb,'LeakageCurrent',value) to set Leakage current (A) to a specific

value.

Data Types: double

Enable timing impairments — Add timing impairments to simulation
off (default) | on

 Integer N PLL with Dual Modulus Prescaler

2-77

Select to add timing impairments such as rise/fall time and propagation delay to simulation. By
default, this option is deselected.

Output step size calculation — Determine how output step size is calculated
Default (default) | Advanced

Determine how output step size is calculated:

• Select Default to calculate output step size from rise/fall time. Output step size (ΔT) is given by

ΔT = Rise/fall time 2

6 · 0.22 .

• Select Advanced to calculate output step size from maximum frequency of interest. Output step
size (ΔT) is given by ΔT = Rise/fall time

6 · Maximum frequency of interest.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge Pump tab.

Maximum frequency of interest (Hz) — Maximum frequency of interest at output
10e9 (default) | positive real scalar

Maximum frequency of interest at the output, specified as a positive real scalar in Hz.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge Pump tab and choose
Advanced for Output step size calculation.

Programmatic Use

• Use get_param(gcb,'MaxFreqInterestCp') to view the current value of Maximum
frequency of interest (Hz).

• Use set_param(gcb,'MaxFreqInterestCp',value) to set Maximum frequency of interest
(Hz) to a specific value.

Data Types: double

Up

Rise/fall time (s) — 20% – 80% rise/fall time for up input port
5e-9 (default) | positive real scalar

20% – 80% rise/fall time for the up input port of the charge pump, specified as a positive real scalar
in seconds.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'RiseFallUp') to view the current value of Up Rise/fall time (s).
• Use set_param(gcb,'RiseFallUp',value) to set Up Rise/fall time (s) to a specific value.

Data Types: double

2 Blocks: PLL

2-78

Propagation delay (s) — Total propagation delay from up input port to output port of charge pump
6e-9 (default) | positive real scalar

Total propagation delay from the up input port to output port of the charge pump, specified as a
positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'PropDelayUp') to view the current value of Up Propagation delay (s).
• Use set_param(gcb,'PropDelayUp',value) to set Up Propagation delay (s) to a specific

value.

Data Types: double

Down

Rise/fall time — 20% – 80% rise/fall time for down input port
2e-9 (default) | scalar

20% – 80% rise/fall time for down input port of charge pump.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'RiseFallDown') to view the current value of Down Rise/fall time (s).
• Use set_param(gcb,'RiseFallDown',value) to set Down Rise/fall time (s) to a specific

value.

Data Types: double

Propagation delay (s) — Total propagation delay from up input port to output port of charge pump
4e-9 (default) | positive real scalar

Total propagation delay from the up input port to output port of the charge pump, specified as a
positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'PropDelayUp') to view the current value of Down Propagation delay
(s).

• Use set_param(gcb,'PropDelayUp',value) to set Down Propagation delay (s) to a
specific value.

Data Types: double

 Integer N PLL with Dual Modulus Prescaler

2-79

VCO

Specify using — Define how VCO output frequency is specified
Voltage sensitivity (default) | Output frequency vs. control voltage

Define how VCO output frequency is specified:

• Select Voltage sensitivity to specify output frequency from Voltage sensitivity (Hz/V) and
Free running frequency (Hz).

• Select Output frequency vs. control voltage to interpolate output frequency from
Control voltage (V) vector versus Output frequency (Hz) vector.

Programmatic Use

• Use set_param(gcb,'SpecifyUsing','Voltage sensitivity') to set Specify using to
Voltage sensitivity.

• Use set_param(gcb,'SpecifyUsing', 'Output frequency vs. control voltage') to
set Specify using to Output frequency vs. control voltage.

Voltage sensitivity (Hz/V) — Measure of change in output frequency of VCO
100e6 (default) | positive real scalar

Measure of change in output frequency for input voltage change, specified as a positive real scalar
with units in Hz/V. This parameter is also reported as VCO voltage sensitivity in the Loop Filter tab
and is used to automatically calculate the filter component values of the loop filter.

Dependencies

To enable this parameter, select Voltage sensitivity in Specify using in the VCO tab.

Programmatic Use

• Use get_param(gcb,'Kvco') to view the current Voltage sensitivity (Hz/V) value.
• Use set_param(gcb,'Kvco',value) to set Voltage sensitivity (Hz/V) to a specific value.

Data Types: double

Free running frequency (Hz) — VCO output frequency without control voltage
1.8e9 (default) | positive real scalar

Frequency of the VCO without any control voltage input (0 V), or the quiescent frequency, specified
as a positive real scalar in Hz.

Dependencies

To enable this parameter, select Voltage sensitivity in Specify using in the VCO tab.

Programmatic Use

• Use get_param(gcb,'Fo') to view current Free running frequency (Hz) value.
• Use set_param(gcb,'Fo',value) to set Free running frequency (Hz) to a specific value.

Data Types: double

Control voltage (V) — Control voltage values
[-5 0 5] (default) | real valued vector

2 Blocks: PLL

2-80

Control voltage values of the VCO, specified as a real valued vector in volts.

Dependencies

To enable this parameter, select Output frequency vs. control voltage in Specify using in
the VCO tab.

Programmatic Use

• Use get_param(gcb,'ControlVoltage') to view current Control voltage (V) value.
• Use set_param(gcb,'ControlVoltage',value) to set Control voltage (V) to a specific

value.

Data Types: double

Output frequency (Hz) — VCO output frequency values
[2e9 2.5e9 3e9] (default) | real valued vector

Output frequency of the values of the VCO, corresponding to the Control voltage (V) vector,
specified in Hz.

Dependencies

To enable this parameter, select Output frequency vs. control voltage in Specify using in
the VCO tab.

Programmatic Use

• Use get_param(gcb,'OutputFrequency') to view current Output frequency (Hz) value.
• Use set_param(gcb,'OutputFrequency',value) to set Output frequency (Hz) to a specific

value.

Data Types: double

Output amplitude gain — Ratio of VCO output voltage to input voltage
1 (default) | positive real scalar

Ratio of VCO output voltage to input voltage, specified as a positive real scalar. The input voltage has
a nontunable value of 1 V.

Programmatic Use

• Use get_param(gcb,'Amplitude') to view current Output amplitude gain value.
• Use set_param(gcb,'Amplitude',value) to set Output amplitude gain to a specific value.

Data Types: double

Impairment

Add Phase-noise — Add phase noise as function of frequency
off (default) | on

Select to introduce phase noise as a function of frequency to the VCO. By default, this option is
deselected.

Phase noise frequency offset (Hz) — Frequency offsets of phase noise from carrier frequency
[10e3 100e3 1e6 3e6 10e6] (default) | real valued vector

 Integer N PLL with Dual Modulus Prescaler

2-81

Frequency offsets of the phase noise from the carrier frequency, specified as a real valued vector in
Hz.
Dependencies

To enable this parameter, select Add Phase-noise in the VCO tab.
Programmatic Use

• Use get_param(gcb,'Foffset') to view the current Phase noise frequency offset (Hz)
metric.

• Use set_param(gcb,'Foffset',value) to set Phase noise frequency offset (Hz) to a
specific metric.

Data Types: double

Phase noise level (dBc/Hz) — Phase noise power at specified frequency offsets relative to the carrier
[-77 -108 -134 -145 -154] (default) | real valued vector

Real valued vector specifying the phase noise power in a 1 Hz bandwidth centered at the specified
frequency offsets relative to the carrier. The value is specified in dBc/Hz.
Dependencies

To enable this parameter, select Add Phase-noise in the VCO tab.
Programmatic Use

• Use get_param(gcb,'PhaseNoise') to view the current Phase noise level (dBc/Hz) metric.
• Use set_param(gcb,'PhaseNoise',value) to set Phase noise level (dBc/Hz) to a specific

metric.

Data Types: double

Prescaler

Program counter value, P — Value of the program counter inside dual modulus prescaler
18 (default) | positive real scalar

Value of the program counter inside the dual modulus prescaler, specified as a positive real scalar.
Program counter value, P is used to calculate the effective divider value. For more information, see
Dual Modulus Prescaler.
Programmatic Use

• Use get_param(gcb,'ProgramCounter') to view the current Program counter value, P.
• Use set_param(gcb,'ProgramCounter',value) to set Program counter value, P to a
specific value.

Data Types: double

Prescaler divider value, N — Value of the prescaler divider inside dual modulus prescaler
5 (default) | positive real scalar

Value of the prescaler divider inside the dual modulus prescaler, specified as a positive real scalar.
Prescaler divider value, N is used to calculate the effective divider value. For more information, see
Dual Modulus Prescaler.

2 Blocks: PLL

2-82

Programmatic Use

• Use get_param(gcb,'PrescalerDivider') to view the current Prescaler divider value, N.
• Use set_param(gcb,'PrescalerDivider',value) to set Prescaler divider value, N to a
specific value.

Data Types: double

Swallow counter value, S — Value of the swallow counter inside dual modulus prescaler
10 (default) | positive real scalar

Value of the swallow counter inside the dual modulus prescaler, specified as a positive real scalar.
Swallow counter value, S is used to calculate the effective divider value. For more information, see
Dual Modulus Prescaler.

Programmatic Use

• Use get_param(gcb,'SwallowCounter') to view the current Swallow counter value, S.
• Use set_param(gcb,'SwallowCounter',value) to set Swallow counter value, S to a
specific value.

Data Types: double

Min clock divider value — Minimum value by which clock divider can divide input frequency
100 (default) | positive real scalar

Minimum value by which the clock divider can divide input frequency, specified as a positive real
scalar. This parameter is also reported in the Loop Filter tab and is used to automatically calculate
the filter component values of the loop filter.

Programmatic Use

• Use get_param(gcb,'Nmin') to view the current value of Min clock divider value.
• Use set_param(gcb,'Nmin',value) to set Min clock divider value to a specific value.

Data Types: double

Loop Filter

Filter component values — Determines how filter components are computed
Automatic (default) | Manual

Select how filter components for the loop filter are computed:

• Select Automatic to automatically compute filter components from system specifications.
Resistance and capacitance edit boxes in the Loop Filter tab are not editable if this option is
selected. Rather, the filter component values are calculated from Loop bandwidth (Hz), Phase
margin (degrees), VCO voltage sensitivity, Charge pump current, and Min clock divider
value. By default, this option is selected.

• Select Manual to manually enter the resistance and capacitance values to design a customized
loop filter.

Loop bandwidth (Hz) — Frequency at which magnitude of open loop transfer function becomes 1
1e6 (default) | positive real scalar

 Integer N PLL with Dual Modulus Prescaler

2-83

Frequency at which the magnitude of the open loop transfer function becomes 1, specified as a
positive real scalar in Hz. Lower values of Loop bandwidth (Hz) result in reduced phase noise and
reference spurs at the expense of longer lock time and less phase margin.

Dependencies

This parameter is only available when Automatic is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'Fc') to view the current value of Loop bandwidth (Hz).
• Use set_param(gcb,'Fc',value) to set Loop bandwidth (Hz) to a specific value.

Data Types: double

Phase margin (degrees) — Phase of open loop transfer function at loop bandwidth subtracted from
180°
45 (default) | positive real scalar

Phase of the open loop transfer function at the loop bandwidth subtracted from 180°, specified as a
positive real scalar in degrees. For optimum lock time, select a phase margin between 40° and 55°.

Dependencies

This parameter is only available when Automatic is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'Phi') to view the current value of Phase margin (degrees).
• Use set_param(gcb,'Phi',value) to set Phase margin (degrees) to a specific value.

Data Types: double

Loop filter type — Order of the loop filter
3rd Order Passive (default) | 2nd Order Passive | 4th Order Passive

Order of the loop filter. Applies a second-, third-, or fourth-order passive RC loop filter in the PLL
system.

C1 (F) — Capacitance 1
5.24e-15 (default) | positive real scalar

Capacitor value C1, specified as a positive real scalar in farad.

Dependencies

This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C1') to view the current value of C1 (F).
• Use set_param(gcb,'C1',value) to set C1 (F) to a specific value.

Data Types: double

2 Blocks: PLL

2-84

C2 (F) — Capacitance 2
5.77e-14 (default) | positive real scalar

Capacitor value C2, specified as a positive real scalar in farad.

Dependencies

This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C2') to view the current value of C2 (F).
• Use set_param(gcb,'C2',value) to set C2 (F) to a specific value.

Data Types: double

C3 (F) — Capacitance 3
3.76e-16 (default) | positive real scalar

Capacitor value C3, specified as a positive real scalar in farad.

Dependencies

• To enable this parameter, select 3rd Order Passive or 4th Order Passive in Loop filter
type.

• This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C3') to view the current value of C3 (F).
• Use set_param(gcb,'C3',value) to set C3 (F) to a specific value.

Data Types: double

C4 (F) — Capacitance 4
1e-12 (default) | positive real scalar

Capacitor value C4, specified as a positive real scalar in farad.

Dependencies

• To enable this parameter, select 4th Order Passive in Loop filter type.
• This parameter is only editable when Manual is selected for the Filter Component values

parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C4') to view the current value of C4 (F).
• Use set_param(gcb,'C4',value) to set C4 (F) to a specific value.

Data Types: double

R2 (ohms) — Resistance 2
6.66e+06 (default) | positive real scalar

 Integer N PLL with Dual Modulus Prescaler

2-85

Resistor value R2, specified as a positive real scalar in ohms.

Dependencies

This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'R2') to view the current value of R2 (ohms).
• Use set_param(gcb,'R2',value) to set R2 (ohms) to a specific value.

Data Types: double

R3 (ohms) — Resistance 3
8.51e+07 (default) | positive real scalar

Resistor value R3, specified as a positive real scalar in ohms.

Dependencies

• To enable this parameter, select 3rd Order Passive or 4th Order Passive in Loop filter
type.

• This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'R3') to view the current value of R3 (ohms).
• Use set_param(gcb,'R3',value) to set R3 (ohms) to a specific value.

Data Types: double

R4 (ohms) — Resistance 4
12e3 (default) | positive real scalar

Resistor value R4, specified as a positive real scalar in ohms.

Dependencies

• To enable this parameter, select 4th Order Passive in Loop filter type.
• This parameter is only editable when Manual is selected for the Filter Component values

parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'R4') to view the current value of R4 (ohms).
• Use set_param(gcb,'R4',value) to set R4 (ohms) to a specific value.

Data Types: double

Enable impairments — Add circuit impairments to simulation
off (default) | on

Select to add circuit impairments such as operating temperature to determine thermal noise to
simulation. By default, this option is deselected.

2 Blocks: PLL

2-86

Operating temperature (℃) — Temperature to determine the level of thermal noise
30 (default) | real scalar

Temperature of the resistor, specified as a real scalar in ℃. Operating temperature determines the
level of thermal (Johnson) noise.

Dependencies

To enable this parameter, select Enable impairments in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'Temperature') to view the current value of Operating temperature.
• Use set_param(gcb,'Temperature',value) to set Operating temperature to a specific

value.

Data Types: double

Export Loop Filter Component Values — Export loop filter component values
button

Click to export loop filter component values to a spreadsheet (XLS file) or as comma-separated values
(CSV file).

Probe

PFD up and PFD down (pfd_up and pfd_down) — Select to probe PFD outputs
off (default) | on

Select to probe the PFD output wires (pfd_up and pfd_down) to view the response of the PFD.

Charge pump output (cp_out) — Select to probe charge pump output
off (default) | on

Select to probe the charge pump output wire (cp_out) to view the response of the Charge Pump.

Loop filter output (lf_out) — Select to probe loop filter output
off (default) | on

Select to probe loop filter output wire (lf_out) to view the response of the Loop Filter. The loop filter
output provides the control voltage to the VCO.

Prescaler output (ps_out) — Select to probe prescaler output
off (default) | on

Select to probe the prescaler output wire (ps_out) to view the response of the Fractional Clock
Divider with Accumulator.

Analysis

Open Loop Analysis — Plot the presimulation open loop analysis
on (default) | off

Select to plot the gain margin and phase margin of the PLL system before simulation. By default, this
option is selected.

 Integer N PLL with Dual Modulus Prescaler

2-87

Closed Loop Analysis — Plot the presimulation closed loop analysis
off (default) | on

Select to plot the pole-zero map, loop bandwidth, step response, and impulse response of the PLL
system before simulation. You must have a license to Control System Toolbox to plot the step
response and impulse response of the PLL system. By default, this option is deselected.

Plot Loop Dynamics — Plot loop dynamics of PLL system
button

Click to plot the presimulation loop dynamics of the PLL system.

Version History
Introduced in R2019a

See Also
PFD | Charge Pump | Loop Filter | Dual Modulus Prescaler | VCO

2 Blocks: PLL

2-88

Integer N PLL with Single Modulus Prescaler
Frequency synthesizer with single modulus prescaler based integer N PLL architecture

Libraries:
Mixed-Signal Blockset / PLL / Architectures

Description
The Integer N PLL with Single Modulus Prescaler reference architecture uses a Single Modulus
Prescaler block as the frequency divider in a PLL system. The frequency divider divides the frequency
of the VCO output signal by an integer value to make it comparable to a PFD reference signal
frequency.

Ports
Input

clk in — Input clock signal
scalar

Input clock signal, specified as a scalar. The signal at the clk in port is used as the reference signal
for the PFD block in a PLL system.
Data Types: double

Output

clk out — Output clock signal
scalar

Output clock signal, specified as a scalar. The signal at the clk out port is the output of the VCO
block in a PLL system.
Data Types: double

 Integer N PLL with Single Modulus Prescaler

2-89

Parameters
Enable increased buffer size — Enable increased buffer size
button

Select to enable increased buffer size during the simulation. This increases the buffer size of all the
building blocks in the PLL model that belong to the Mixed-Signal Blockset/PLL/Building Blocks
Simulink library. The building blocks are PFD, Charge Pump, Loop Filter, VCO, and Single Modulus
Prescaler. By default, this option is deselected.

Buffer size for loop filter — Buffer size for loop filter
1000 (default) | positive integer scalar

Buffer size for the loop filter, specified as a positive integer scalar. This sets the number of extra
buffer samples available during the simulation to the Convert Sample Time subsystem inside the loop
filter.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size for loop filter to a large enough
value so that the input buffer contains all the input samples required.

Dependencies

This parameter is only available when the Enable increased buffer size option is selected.

Programmatic Use

• Use get_param(gcb,'NBufferFilter') to view the current value of Buffer size for loop
filter.

• Use set_param(gcb,'NBufferFilter',value) to set Buffer size for loop filter to a specific
value.

Buffer size for PFD, charge pump, VCO, prescaler — Buffer size for PFD, charge pump, VCO, and
prescaler
10 (default) | positive integer scalar

Buffer size for the PFD, charge pump, VCO, and prescaler, specified as a positive integer scalar. This
sets the buffer size of the PFD, Charge Pump, VCO, and Single Modulus Prescaler blocks inside the
PLL model.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size for PFD, charge pump, VCO,
prescaler to a large enough value so that the input buffer contains all the input samples required.

Dependencies

This parameter is only available when the Enable increased buffer size option is selected.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size for PFD, charge
pump, VCO, prescaler.

• Use set_param(gcb,'NBuffer',value) to set Buffer size for PFD, charge pump, VCO,
prescaler to a specific value.

2 Blocks: PLL

2-90

PFD

Configuration

Deadband compensation (s) — Delay added for active output near zero phase offset
30e-12 (default) | positive real scalar

Delay added for active output near zero phase offset, specified as a positive real scalar in seconds.
Deadband is the phase offset band near zero phase offset for which the PFD output is negligible.
Programmatic Use

• Use get_param(gcb,'DeadbandCompensation') to view the current value of Deadband
compensation (s).

• Use set_param(gcb,'DeadbandCompensation',value) to set Deadband compensation (s)
to a specific value.

Data Types: double

Impairments

Enable impairments — Add circuit impairments to simulation
off (default) | on

Select to add circuit impairments such as rise/fall time and propagation delay to simulation. By
default, this option is deselected.

Output step size calculation — Determine how output step size is calculated
Default (default) | Advanced

Determine how output step size is calculated:

• Select Default to calculate output step size from rise/fall time. Output step size (ΔT) is given by

ΔT = Rise/fall time 2

6 · 0.22 .

• Select Advanced to calculate output step size from maximum frequency of interest. Output step
size (ΔT) is given by ΔT = Rise/fall time

6 · Maximum frequency of interest.

Dependencies

To enable this parameter, select Enable Impairments in the PFD tab.

Maximum frequency of interest (Hz) — Maximum frequency of interest at output
10e9 (default) | positive real scalar

Maximum frequency of interest at the output, specified as a positive real scalar in Hz.
Dependencies

To enable this parameter, select Enable Impairments in the PFD tab and choose Advanced for
Output step size calculation.
Programmatic Use

• Use get_param(gcb,'MaxFreqInterest') to view the current value of Maximum frequency
of interest (Hz).

 Integer N PLL with Single Modulus Prescaler

2-91

• Use set_param(gcb,'MaxFreqInterest',value) to set Maximum frequency of interest
(Hz) to a specific value.

Data Types: double

Rise/fall time (s) — 20% – 80% rise/fall time for up output port of PFD
30e-12 (default) | positive real scalar

20% – 80% rise/fall time for the up output port of the PFD, specified as a real positive scalar in
seconds.
Dependencies

To enable this parameter, select Enable Impairments in the PFD tab.
Programmatic Use

• Use get_param(gcb,'RiseFallTime') to view the current value of Rise/fall time (s).
• Use set_param(gcb,'RiseFallTime',value) to set Rise/fall time (s) to a specific value.

Propagation Delay (s) — Delay from input port to output port of PFD
50e-12 (default) | positive real scalar

Delay from the input port to output port of the PFD, specified as a positive real scalar in seconds.
Dependencies

To enable this parameter, select Enable Impairments in the PFD tab.
Programmatic Use

• Use get_param(gcb,'PropDelay') to view the current value of Propagation Delay (s).
• Use set_param(gcb,'PropDelay',value) to set Propagation Delay (s) to a specific value.

Data Types: double

Charge pump

Configuration

Output current (A) — Design output current
1e-3 (default) | positive real scalar

Full scale magnitude of design output current, specified as a positive real scalar in amperes. This
parameter is also reported as Charge pump current in the Loop Filter tab and is used to
automatically calculate the filter component values of the loop filter.
Programmatic Use

• Use get_param(gcb,'OutputCurrent') to view the current value of Output current (A).
• Use set_param(gcb,'OutputCurrent',value) to set Output current (A) to a specific value.

Data Types: double

Input threshold (V) — Logic switching threshold at input ports
0.5 (default) | real scalar

Logic switching threshold at input ports, specified as a real scalar in volts.

2 Blocks: PLL

2-92

Programmatic Use

• Use get_param(gcb,'InputThreshold') to view the current value of Input threshold (V).
• Use set_param(gcb,'InputThreshold',value) to set Input threshold (V) to a specific

value.

Data Types: double

Impairments

Enable current impairments — Add current impairments to simulation
off (default) | on

Select to add current impairments such as current imbalance and leakage current to simulation. By
default, this option is deselected.

Current imbalance (A) — Difference between full scale positive and negative current
1e-7 (default) | positive real scalar

Difference between full scale positive and negative current, specified as a positive real scalar in
amperes.

Dependencies

To enable this parameter, select Enable current impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'CurrentImbalance') to view the current value of Current imbalance
(A).

• Use set_param(gcb,'CurrentImbalance',value) to set Current imbalance (A) to a
specific value.

Data Types: double

Leakage current (A) — Output current without any input
1e-8 (default) | nonnegative real scalar

Output current when both inputs are at logic zero, specified as a nonnegative real scalar in amperes.

Dependencies

To enable this parameter, select Enable current impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'LeakageCurrent') to view the current value of Leakage current (A).
• Use set_param(gcb,'LeakageCurrent',value) to set Leakage current (A) to a specific

value.

Data Types: double

Enable timing impairments — Add timing impairments to simulation
off (default) | on

Select to add timing impairments such as rise/fall time and propagation delay to simulation. By
default, this option is deselected.

 Integer N PLL with Single Modulus Prescaler

2-93

Output step size calculation — Determine how output step size is calculated
Default (default) | Advanced

Determine how output step size is calculated:

• Select Default to calculate output step size from rise/fall time. Output step size (ΔT) is given by

ΔT = Rise/fall time 2

6 · 0.22 .

• Select Advanced to calculate output step size from maximum frequency of interest. Output step
size (ΔT) is given by ΔT = Rise/fall time

6 · Maximum frequency of interest.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge Pump tab.

Maximum frequency of interest (Hz) — Maximum frequency of interest at output
10e9 (default) | positive real scalar

Maximum frequency of interest at the output, specified as a positive real scalar in Hz.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge Pump tab and choose
Advanced for Output step size calculation.

Programmatic Use

• Use get_param(gcb,'MaxFreqInterestCp') to view the current value of Maximum
frequency of interest (Hz).

• Use set_param(gcb,'MaxFreqInterestCp',value) to set Maximum frequency of interest
(Hz) to a specific value.

Data Types: double

Up

Rise/fall time (s) — 20% – 80% rise/fall time for up input port
5e-9 (default) | positive real scalar

20% – 80% rise/fall time for the up input port of the charge pump, specified as a positive real scalar
in seconds.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'RiseFallUp') to view the current value of Up Rise/fall time (s).
• Use set_param(gcb,'RiseFallUp',value) to set Up Rise/fall time (s) to a specific value.

Data Types: double

Propagation delay (s) — Total propagation delay from up input port to output port of charge pump
6e-9 (default) | positive real scalar

2 Blocks: PLL

2-94

Total propagation delay from the up input port to output port of the charge pump, specified as a
positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'PropDelayUp') to view the current value of Up Propagation delay (s).
• Use set_param(gcb,'PropDelayUp',value) to set Up Propagation delay (s) to a specific

value.

Data Types: double

Down

Rise/fall time — 20% – 80% rise/fall time for down input port
2e-9 (default) | scalar

20% – 80% rise/fall time for down input port of charge pump.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'RiseFallDown') to view the current value of Down Rise/fall time (s).
• Use set_param(gcb,'RiseFallDown',value) to set Down Rise/fall time (s) to a specific

value.

Data Types: double

Propagation delay (s) — Total propagation delay from up input port to output port of charge pump
4e-9 (default) | positive real scalar

Total propagation delay from the up input port to output port of the charge pump, specified as a
positive real scalar in seconds.

Dependencies

To enable this parameter, select Enable timing impairments in the Charge pump tab.

Programmatic Use

• Use get_param(gcb,'PropDelayUp') to view the current value of Down Propagation delay
(s).

• Use set_param(gcb,'PropDelayUp',value) to set Down Propagation delay (s) to a
specific value.

Data Types: double

VCO

Specify using — Define how VCO output frequency is specified
Voltage sensitivity (default) | Output frequency vs. control voltage

 Integer N PLL with Single Modulus Prescaler

2-95

Define how VCO output frequency is specified:

• Select Voltage sensitivity to specify output frequency from Voltage sensitivity (Hz/V) and
Free running frequency (Hz).

• Select Output frequency vs. control voltage to interpolate output frequency from
Control voltage (V) vector versus Output frequency (Hz) vector.

Programmatic Use

• Use set_param(gcb,'SpecifyUsing','Voltage sensitivity') to set Specify using to
Voltage sensitivity.

• Use set_param(gcb,'SpecifyUsing', 'Output frequency vs. control voltage') to
set Specify using to Output frequency vs. control voltage.

Voltage sensitivity (Hz/V) — Measure of change in output frequency of VCO
100e6 (default) | positive real scalar

Measure of change in output frequency for input voltage change, specified as a positive real scalar
with units in Hz/V. This parameter is also reported as VCO voltage sensitivity in the Loop Filter tab
and is used to automatically calculate the filter component values of the loop filter.

Dependencies

To enable this parameter, select Voltage sensitivity in Specify using in the VCO tab.

Programmatic Use

• Use get_param(gcb,'Kvco') to view the current Voltage sensitivity (Hz/V) value.
• Use set_param(gcb,'Kvco',value) to set Voltage sensitivity (Hz/V) to a specific value.

Data Types: double

Free running frequency (Hz) — VCO output frequency without control voltage
1.8e9 (default) | positive real scalar

Frequency of the VCO without any control voltage input (0 V), or the quiescent frequency, specified
as a positive real scalar in Hz.

Dependencies

To enable this parameter, select Voltage sensitivity in Specify using in the VCO tab.

Programmatic Use

• Use get_param(gcb,'Fo') to view current Free running frequency (Hz) value.
• Use set_param(gcb,'Fo',value) to set Free running frequency (Hz) to a specific value.

Data Types: double

Control voltage (V) — Control voltage values
[-5 0 5] (default) | real valued vector

Control voltage values of the VCO, specified as a real valued vector in volts.

2 Blocks: PLL

2-96

Dependencies

To enable this parameter, select Output frequency vs. control voltage in Specify using in
the VCO tab.

Programmatic Use

• Use get_param(gcb,'ControlVoltage') to view current Control voltage (V) value.
• Use set_param(gcb,'ControlVoltage',value) to set Control voltage (V) to a specific

value.

Data Types: double

Output frequency (Hz) — VCO output frequency values
[2e9 2.5e9 3e9] (default) | real valued vector

Output frequency of the values of the VCO, corresponding to the Control voltage (V) vector,
specified in Hz.

Dependencies

To enable this parameter, select Output frequency vs. control voltage in Specify using in
the VCO tab.

Programmatic Use

• Use get_param(gcb,'OutputFrequency') to view current Output frequency (Hz) value.
• Use set_param(gcb,'OutputFrequency',value) to set Output frequency (Hz) to a specific

value.

Data Types: double

Output amplitude gain — Ratio of VCO output voltage to input voltage
1 (default) | positive real scalar

Ratio of VCO output voltage to input voltage, specified as a positive real scalar. The input voltage has
a nontunable value of 1 V.

Programmatic Use

• Use get_param(gcb,'Amplitude') to view current Output amplitude gain value.
• Use set_param(gcb,'Amplitude',value) to set Output amplitude gain to a specific value.

Data Types: double

Impairment

Add Phase-noise — Add phase noise as function of frequency
off (default) | on

Select to introduce phase noise as a function of frequency to the VCO. By default, this option is
deselected.

Phase noise frequency offset (Hz) — Frequency offsets of phase noise from carrier frequency
[10e3 100e3 1e6 3e6 10e6] (default) | real valued vector

 Integer N PLL with Single Modulus Prescaler

2-97

Frequency offsets of the phase noise from the carrier frequency, specified as a real valued vector in
Hz.

Dependencies

To enable this parameter, select Add Phase-noise in the VCO tab.

Programmatic Use

• Use get_param(gcb,'Foffset') to view the current Phase noise frequency offset (Hz)
metric.

• Use set_param(gcb,'Foffset',value) to set Phase noise frequency offset (Hz) to a
specific metric.

Data Types: double

Phase noise level (dBc/Hz) — Phase noise power at specified frequency offsets relative to the carrier
[-77 -108 -134 -145 -154] (default) | real valued vector

Real valued vector specifying the phase noise power in a 1 Hz bandwidth centered at the specified
frequency offsets relative to the carrier. The value is specified in dBc/Hz.

Dependencies

To enable this parameter, select Add Phase-noise in the VCO tab.

Programmatic Use

• Use get_param(gcb,'PhaseNoise') to view the current Phase noise level (dBc/Hz) metric.
• Use set_param(gcb,'PhaseNoise',value) to set Phase noise level (dBc/Hz) to a specific

metric.

Data Types: double

Prescaler

Clock divider value — Value by which the clock divider divides the input frequency
100 (default) | real positive scalar

Value by which the clock divider divides the input frequency, specified as a real positive scalar.

Programmatic Use

• Use get_param(gcb,'N') to view the current value of Clock divider value.
• Use set_param(gcb,'N',value) to set Clock divider value to a specific value.

Data Types: double

Min clock divider value — Minimum value by which clock divider can divide input frequency
100 (default) | real positive scalar

Minimum value by which the clock divider can divide input frequency, specified as a real positive
scalar. This parameter is also reported in the Loop Filter tab and is used to automatically calculate
the filter component values of the loop filter.

2 Blocks: PLL

2-98

Programmatic Use

• Use get_param(gcb,'Nmin') to view the current value of Min clock divider value.
• Use set_param(gcb,'Nmin',value) to set Min clock divider value to a specific value.

Data Types: double

Loop Filter

Filter component values — Determines how filter components are computed
Automatic (default) | Manual

Select how filter components for the loop filter are computed:

• Select Automatic to automatically compute filter components from system specifications.
Resistance and capacitance edit boxes in the Loop Filter tab are not editable if this option is
selected. Rather, the filter component values are calculated from Loop bandwidth (Hz), Phase
margin (degrees), VCO voltage sensitivity, Charge pump current, and Min clock divider
value. By default, this option is selected.

• Select Manual to manually enter the resistance and capacitance values to design a customized
loop filter.

Loop bandwidth (Hz) — Frequency at which magnitude of open loop transfer function becomes 1
2e6 (default) | positive real scalar

Frequency at which the magnitude of the open loop transfer function becomes 1, specified as a
positive real scalar in Hz. Lower values of Loop bandwidth (Hz) result in reduced phase noise and
reference spurs at the expense of longer lock time and less phase margin.

Dependencies

This parameter is only available when Automatic is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'Fc') to view the current value of Loop bandwidth (Hz).
• Use set_param(gcb,'Fc',value) to set Loop bandwidth (Hz) to a specific value.

Data Types: double

Phase margin (degrees) — Phase of open loop transfer function at loop bandwidth subtracted from
180°
45 (default) | positive real scalar

Phase of the open loop transfer function at the loop bandwidth subtracted from 180°, specified as a
positive real scalar in degrees. For optimum lock time, select a phase margin between 40° and 55°.

Dependencies

This parameter is only available when Automatic is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'Phi') to view the current value of Phase margin (degrees).

 Integer N PLL with Single Modulus Prescaler

2-99

• Use set_param(gcb,'Phi',value) to set Phase margin (degrees) to a specific value.

Data Types: double

Loop filter type — Order of the loop filter
3rd Order Passive (default) | 2nd Order Passive | 4th Order Passive

Order of the loop filter. Applies a second-, third-, or fourth-order passive RC loop filter in the PLL
system.

C1 (F) — Capacitance 1
1.31e-15 (default) | positive real scalar

Capacitor value C1, specified as a positive real scalar in farad.

Dependencies

This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C1') to view the current value of C1 (F).
• Use set_param(gcb,'C1',value) to set C1 (F) to a specific value.

Data Types: double

C2 (F) — Capacitance 2
1.44e-14 (default) | positive real scalar

Capacitor value C2, specified as a positive real scalar in farad.

Dependencies

This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C2') to view the current value of C2 (F).
• Use set_param(gcb,'C2',value) to set C2 (F) to a specific value.

Data Types: double

C3 (F) — Capacitance 3
9.41e-17 (default) | positive real scalar

Capacitor value C3, specified as a positive real scalar in farad.

Dependencies

• To enable this parameter, select 3rd Order Passive or 4th Order Passive in Loop filter
type.

• This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

2 Blocks: PLL

2-100

Programmatic Use

• Use get_param(gcb,'C3') to view the current value of C3 (F).
• Use set_param(gcb,'C3',value) to set C3 (F) to a specific value.

Data Types: double

C4 (F) — Capacitance 4
331.5752 (default) | positive real scalar

Capacitor value C4, specified as a positive real scalar in farad.

Dependencies

• To enable this parameter, select 4th Order Passive in Loop filter type.
• This parameter is only editable when Manual is selected for the Filter Component values

parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'C4') to view the current value of C4 (F).
• Use set_param(gcb,'C4',value) to set C4 (F) to a specific value.

Data Types: double

R2 (ohms) — Resistance 2
1.33e+07 (default) | positive real scalar

Resistor value R2, specified as a positive real scalar in ohms.

Dependencies

This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'R2') to view the current value of R2 (ohms).
• Use set_param(gcb,'R2',value) to set R2 (ohms) to a specific value.

Data Types: double

R3 (ohms) — Resistance 3
1.7e+08 (default) | positive real scalar

Resistor value R3, specified as a positive real scalar in ohms.

Dependencies

• To enable this parameter, select 3rd Order Passive or 4th Order Passive in Loop filter
type.

• This parameter is only editable when Manual is selected for the Filter Component values
parameter in the Loop Filter tab.

 Integer N PLL with Single Modulus Prescaler

2-101

Programmatic Use

• Use get_param(gcb,'R3') to view the current value of R3 (ohms).
• Use set_param(gcb,'R3',value) to set R3 (ohms) to a specific value.

Data Types: double

R4 (ohms) — Resistance 4
28.1695 (default) | positive real scalar

Resistor value R4, specified as a positive real scalar in ohms.

Dependencies

• To enable this parameter, select 4th Order Passive in Loop filter type.
• This parameter is only editable when Manual is selected for the Filter Component values

parameter in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'R4') to view the current value of R4 (ohms).
• Use set_param(gcb,'R4',value) to set R4 (ohms) to a specific value.

Data Types: double

Enable impairments — Add circuit impairments to simulation
off (default) | on

Select to add circuit impairments such as operating temperature to determine thermal noise to
simulation. By default, this option is deselected.

Operating temperature (℃) — Temperature to determine the level of thermal noise
30 (default) | real scalar

Temperature of the resistor, specified as a real scalar in ℃. Operating temperature determines the
level of thermal (Johnson) noise.

Dependencies

To enable this parameter, select Enable impairments in the Loop Filter tab.

Programmatic Use

• Use get_param(gcb,'Temperature') to view the current value of Operating temperature.
• Use set_param(gcb,'Temperature',value) to set Operating temperature to a specific

value.

Data Types: double

Export Loop Filter Component Values — Export loop filter component values
button

Click to export loop filter component values to a spreadsheet (XLS file) or as comma-separated values
(CSV file).

2 Blocks: PLL

2-102

Probe

PFD up and PFD down (pfd_up and pfd_down) — Select to probe PFD outputs
off (default) | on

Select to probe the PFD output wires (pfd_up and pfd_down) to view the response of the PFD.

Charge pump output (cp_out) — Select to probe charge pump output
off (default) | on

Select to probe the charge pump output wire (cp_out) to view the response of the Charge Pump.

Loop filter output (lf_out) — Select to probe loop filter output
off (default) | on

Select to probe loop filter output wire (lf_out) to view the response of the Loop Filter. The loop filter
output provides the control voltage to the VCO.

Prescaler output (ps_out) — Select to probe prescaler output
off (default) | on

Select to probe the prescaler output wire (ps_out) to view the response of the Fractional Clock
Divider with Accumulator.

Analysis

Open Loop Analysis — Plot the presimulation open loop analysis
on (default) | off

Select to plot the gain margin and phase margin of the PLL system before simulation. By default, this
option is selected.

Closed Loop Analysis — Plot the presimulation closed loop analysis
off (default) | on

Select to plot the pole-zero map, loop bandwidth, step response, and impulse response of the PLL
system before simulation. You must have a license to Control System Toolbox to plot the step
response and impulse response of the PLL system. By default, this option is deselected.

Plot Loop Dynamics — Plot loop dynamics of PLL system
button

Click to plot the presimulation loop dynamics of the PLL system.

Version History
Introduced in R2019a

See Also
PFD | Charge Pump | Loop Filter | Single Modulus Prescaler | VCO

 Integer N PLL with Single Modulus Prescaler

2-103

Lock Time Measurement
Measure time a PLL takes to reach target frequency within given tolerance

Libraries:
Mixed-Signal Blockset / PLL / Measurements & Testbenches

Description
The Lock Time Measurement block measures the lock time of a phase-locked loop (PLL) system. Lock
time is the time required by the PLL to reach the target frequency within the given error tolerance.

Ports
Input

pll out — Input clock signal
scalar

Input clock signal to the Lock Time Measurement block, specified as a scalar. The pll out port is
connected to the output of a PLL system.
Data Types: double

Output

lock time — Time required to achieve lock in PLL
real positive scalar

Time at which locking takes place in a PLL system, returned as a real positive scalar in seconds.
Data Types: double

Parameters
Target frequency (Hz) — Target operating frequency of PLL to measure lock time
2.1e9 (default) | real positive scalar

Target operating frequency of the PLL device under test (DUT) to measure the lock time of the PLL,
specified as a real positive scalar in Hz.

Programmatic Use

• Use get_param(gcb,'TargetFreq') to view the current value of Target frequency.
• Use set_param(gcb,'TargetFreq',value) to set Target frequency to a specific value.

Error tolerance (Hz) — Error tolerance for lock time measurement
1e5 (default) | real positive scalar

2 Blocks: PLL

2-104

Error tolerance for lock time measurement, specified as a real positive scalar in Hz.

Programmatic Use

• Use get_param(gcb,'FreqErrorTol') to view the current value of Error tolerance.
• Use set_param(gcb,'FreqErrorTol',value) to set Error tolerance to a specific value.

Version History
Introduced in R2019a

See Also
Fractional N PLL with Analog Compensation | Fractional N PLL with Delta Sigma Modulator | Integer
N PLL with Dual Modulus Prescaler | Integer N PLL with Single Modulus Prescaler | PLL Testbench

 Lock Time Measurement

2-105

Phase Noise Measurement
Compute phase noise at specific frequency offset vectors

Libraries:
Mixed-Signal Blockset / PLL / Measurements & Testbenches

Description
The Phase Noise Measurement block measures and plots the phase noise profile for a time domain
signal. It also displays the phase noise values for the specified frequency offset vector on the icon of
the block.

Ports
Input

sig — Input signal
scalar

Input time domain signal to the Phase Noise Measurement block, specified as a scalar.
Data Types: double

Parameters
Resolution bandwidth (Hz) — Smallest positive frequency that can be resolved
30e3 (default) | real positive scalar

Smallest positive frequency that can be resolved, specified as a real positive scalar. The Resolution
bandwidth (Hz) is used to determine window length for spectral analysis using the Welch method.
For more information, see “Welch's Method of Averaged Modified Periodograms”.

In general, Resolution bandwidth (Hz) should be less than or equal to the lowest offset frequency
value.

Programmatic Use

• Use get_param(gcb,'ResBandwidth') to view the current value of Resolution bandwidth
(Hz).

• Use set_param(gcb,'ResBandwidth',value) to set Resolution bandwidth (Hz) to a
specific value.

No. of spectral averages — Number of spectral averages
4 (default) | positive integer scalar

Number of spectral averages, specified as a positive integer scalar. The dsp.SpectrumEstimator
System object used by the Phase Noise Measurement block computes the current power spectrum or

2 Blocks: PLL

2-106

power density spectrum estimate by averaging over the number specified by No. of spectral
averages.

Programmatic Use

• Use get_param(gcb,'SpectralAverages') to view the current value of No. of spectral
averages.

• Use set_param(gcb,'SpectralAverages',value) to set No. of spectral averages to a
specific value.

Hold off time (s) — Delays measurement analysis to avoid transients
0 (default) | real nonnegative scalar

Delays measurement analysis by the specified amount of time to avoid corruption by transients,
specified as a real nonnegative scalar in s.

Programmatic Use

• Use get_param(gcb,'HoldOffTime') to view the current value of Hold off time (s).
• Use set_param(gcb,'HoldOffTime',value) to set Hold off time (s) to a specific value.

Frequency offset vector (Hz) — Frequency points relative to fundamental frequency where phase
noise is calculated
[30e3 100e3 1e6 3e6 10e6] (default) | real valued vector

Frequency points relative to fundamental frequency where phase noise is calculated, specified as a
real valued vector in Hz.

Programmatic Use

• Use get_param(gcb,'PhaseNoiseFreqOffset') to view the current value of Frequency
offset vector (Hz).

• Use set_param(gcb,'PhaseNoiseFreqOffset',value) to set Frequency offset vector
(Hz) to a specific value.

Specify target — Specify target phase noise vector
off (default) | on

Specify the target phase noise vector for a given frequency offset vector. By default, this option is
deselected

Phase noise vector (dBc/Hz) — Target phase noise profile for given frequency offset vector
[-300 -300 -300 -300 -300] (default) | real valued vector

Target phase noise profile for given frequency offset vector, specified as a real valued vector in
dBc/Hz. Phase noise vector (dBc/Hz) is the phase noise power in a 1 Hz bandwidth centered at the
specified frequency offsets relative to the carrier

Dependencies

To enable this parameter, select the Specify target parameter.

Programmatic Use

• Use get_param(gcb,'TargetPhaseNoise') to view the current value of Phase noise vector
(dBc/Hz).

 Phase Noise Measurement

2-107

• Use set_param(gcb,'TargetPhaseNoise',value) to set Phase noise vector (dBc/Hz) to a
specific value.

Set stop time — Set recommended minimum simulation stop time as model stop time
button

Click to set the Recommended min. simulation stop time (s) reported by the Phase Noise
Measurement block as the model stop time.

Plot phase noise — Plot phase noise profile of input signal
button

Click to plot the measured phase noise profile of the input signal. Target phase noise profile is also
overlayed if the Specify target option is selected. You can plot the phase noise profile any time
during simulation.

Export measurement results — Export measurement results after simulation
button

Click to export measurement results to an excel spreadsheet (XLS) or as comma-separated values
(CSV) after the simulation is complete.

Algorithms
The Phase Noise Measurement block uses the zero crossing points of a signal to measure the phase
noise. From the zero crossing points, the phase error (φ)is extracted both at the rising and falling
edge of the signal. The captured phase error is used to generate a periodic signal (sin(φ)). This
periodic signal is interpolated using a fixed time step proportional to the maximum phase noise
frequency offset. The power density of the modified phase noise signal, using the
dsp.SpectrumEstimator System object, directly provides the phase noise profile of the signal of
interest.

Version History
Introduced in R2019a

See Also
Fractional N PLL with Analog Compensation | Fractional N PLL with Delta Sigma Modulator | Integer
N PLL with Dual Modulus Prescaler | Integer N PLL with Single Modulus Prescaler | PLL Testbench

2 Blocks: PLL

2-108

PFD and Charge Pump Testbench
Generic test environment for phase/frequency detectors and charge pumps

Libraries:
Mixed-Signal Blockset / PLL / Measurements & Testbenches

Description
The PFD and Charge Pump Testbench block evaluates the behavioral model of a PFD and charge
pump. A single stimulus generator determines whether the PFD is operating in the phase offset mode
or frequency offset mode.

The PFD and Charge Pump Testbench block generates the stimulus to drive the device under test
(DUT) from the Stimulus tab. The setup parameters for validating the DUT are defined in the Setup
tab and the target validation metrics are defined in the Target Metrics tab.

The testbench measure PFD performance metrics such as deadband, linear rage, and timing
impairments. It also measures charge pump performance metrics such as sensitivity, phase offset,
and spur current.

Ports
Input

from PFD up — Measures PFD reference frequency
scalar

Measures the reference frequency of the PFD block.
Data Types: double

from PFD down — Measures PFD feedback frequency
scalar

Measures the feedback frequency of the PFD block.
Data Types: double

from charge pump — Measures charge pump output current
scalar

Measures the output current of the Charge Pump block.
Data Types: double

Output

to PFD reference — Provides reference frequency to PFD
scalar

Provides reference frequency to the PFD to determine phase error.

 PFD and Charge Pump Testbench

2-109

Data Types: double

to PFD feedback — Provides feedback frequency to PFD
scalar

Provides feedback frequency to the PFD block.
Data Types: double

Parameters
Stimulus

Phase sweep (°) — Maximum phase excursion from phase offset
300 (default) | real positive scalar

Maximum phase excursion from phase offset, specified as a real positive scalar in degrees.

Programmatic Use

• Use get_param(gcb,'PhaseSweep') to view the current value of Phase sweep.
• Use set_param(gcb,'PhaseSweep',value) to set Phase sweep to a specific value.

Data Types: double

Phase offset (°) — Relative phase value at center of phase sweep
0 (default) | real scalar

Relative phase value at the center of the phase sweep, specified as a real scalar in degrees.

Programmatic Use

• Use get_param(gcb,'PhaseOffset') to view the current value of Phase offset.
• Use set_param(gcb,'PhaseOffset',value) to set Phase offset to a specific value.

Data Types: double

Clock frequency (Hz) — Desired reference clock frequency
2.5e9 Hz (default) | real positive scalar

Desired clock frequency for the reference counter output, specified as a real positive scalar in Hz.

Programmatic Use

• Use get_param(gcb,'ClockFrequency') to view the current value of Clock frequency.
• Use set_param(gcb,'ClockFrequency',value) to set Clock frequency to a specific value.

Data Types: double

Number of phases in sweep — Total number of evenly spaced phase offsets to simulate
2000 (default) | real positive scalar

The number of evenly spaced phase offsets in a sweep of phase offset, specified as a real positive
scalar.

2 Blocks: PLL

2-110

Programmatic Use

• Use get_param(gcb,'NPhases') to view the current value of Number of phases in sweep.
• Use set_param(gcb,'NPhases',value) to set Number of phases in sweep to a specific

value.

Data Types: double

Duty cycle (%) — Duty cycle of stimulus clock
50 (default) | real positive scalar

Duty cycle for the stimulus clock at both reference and feedback ports, specified as real positive
scalar.
Programmatic Use

• Use get_param(gcb,'DutyCycle') to view the current value of Duty cycle.
• Use set_param(gcb,'NPhases',value) to set Duty cycle to a specific value.

Data Types: double

Setup

Plot figures on top after simulation — Plot figures on top after simulation
on (default) | off

Select to plot the figures on the top of all other windows after simulation. By default, this option is
selected.

Report PFD metrics — Report PFD metrics
on (default) | off

Select to display the PFD metrics (Deadband, Linear Range, and Propagation delay) on the icon of the
PFD and Charge Pump Testbench. By default, this option is selected
Data Types: double

Report Charge Pump metrics — Report Charge Pump metrics
on (default) | off

Select to display the Charge Pump metrics (Sensitivity, Phase offset, and Spur current) on the icon of
the PFD and Charge Pump Testbench. By default, this option is selected
Data Types: double

Logic Threshold (V) — Switching threshold at input of charge pump
0.5 (default) | real scalar

Switching threshold at the input of a charge pump, specified as a real scalar in V. It is the voltage at
which the timing of rising and falling edges is measured.
Programmatic Use

• Use get_param(gcb,'VSwitch') to view the current value of Logic Threshold.
• Use set_param(gcb,'VSwitch',value) to set Logic Threshold to a specific value.

Data Types: double

 PFD and Charge Pump Testbench

2-111

Enable increased buffer size — Enable increased buffer size
off (default) | on

Select to enable increased buffer size during simulation. This increases the buffer size of the Variable
Pulse Delay and Logic Decision blocks inside the PFD and Charge Pump Testbench. By default, this
option is deselected.

Buffer size — Number of samples of the input buffering available during simulation
5 (default) | positive integer scalar

Number of samples of the input buffering available during simulation, specified as a positive integer
scalar. This sets the Variable Pulse Delay and Logic Decision inside the PFD and Charge Pump
Testbench.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value so that
the input buffer contains all the input samples required.

Dependencies

This parameter is only available when Enable increased buffer size option is selected in the
Configuration tab.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size.
• Use set_param(gcb,'NBuffer',value) to set Buffer size to a specific value.

Target Metrics

PFD Metrics

Target deadband (°) — Maximum acceptable size of reduced sensitivity region near zero phase offset
0 (default) | real nonnegative scalar

Maximum acceptable size of reduced sensitivity region near zero phase offset, specified as a real
nonnegative scalar in degrees. It refers to the size of the deadband region.

Programmatic Use

• Use get_param(gcb,'TgtDeadband') to view the current value of Target deadband.
• Use set_param(gcb,'TgtDeadband',value) to set Target deadband to a specific value.

Data Types: double

Target linear range (°) — Maximum phase offset at which the output remains approximately equal to
the input offset
290 (default) | real positive scalar

Maximum phase offset at which the output remains approximately equal to the input offset, specified
as a real positive scalar in degrees.

Programmatic Use

• Use get_param(gcb,'TgtRange') to view the current value of Target linear range.
• Use set_param(gcb,'TgtRange',value) to set Target linear range to a specific value.

2 Blocks: PLL

2-112

Data Types: double

Target propagation delay (s) — Maximum acceptable delay from input to output
60e-12 (default) | real positive scalar

Maximum acceptable delay from the input to output, specified as a real positive scalar in s.
Programmatic Use

• Use get_param(gcb,'TgtPropDelay') to view the current value of Target propagation
delay.

• Use set_param(gcb,'TgtPropDelay',value) to set Target propagation delay to a specific
value.

Data Types: double

Target rise/fall time (s) — Maximum acceptable 20% – 80% rise/fall time
30e-12 (default) | real positive scalar

Maximum acceptable 20% – 80% rise/fall time, specified as a real positive scalar in s.
Programmatic Use

• Use get_param(gcb,'TgtRiseFall') to view the current value of Target rise/fall time.
• Use set_param(gcb,'TgtRiseFall',value) to set Target rise/fall time to a specific value.

Data Types: double

Charge Pump Metrics

Target sensitivity (A/°) — Maximum acceptable charge pump sensitivity
1e-9 (default) | real positive scalar

Maximum acceptable charge pump sensitivity, specified as a real positive scalar in A/°.
Programmatic Use

• Use get_param(gcb,'TgtSensitivity') to view the current value of Target sensitivity.
• Use set_param(gcb,'TgtSensitivity',value) to set Target sensitivity to a specific value.

Data Types: double

Target phase offset (°) — Maximum acceptable phase offset at output of charge pump
10 (default) | real positive scalar

Maximum acceptable phase offset at the output of a charge pump, specified as a real positive scalar
in degrees.
Programmatic Use

• Use get_param(gcb,'TgtOffset') to view the current value of Target phase offset.
• Use set_param(gcb,'TgtOffset',value) to set Target phase offset to a specific value.

Data Types: double

Target spur current (A) — Charge pump output current magnitude
1e-7 (default)

 PFD and Charge Pump Testbench

2-113

Magnitude of the output current of the charge pump at the reference frequency.

Programmatic Use

• Use get_param(gcb,'TgtSpurCurrent') to view the current value of Target spur current.
• Use set_param(gcb,'TgtSpurCurrent',value) to set Target spur current to a specific

value.

Data Types: double

Version History
Introduced in R2019a

References
[1] Banerjee, Dean. PLL Performance, Simulation and Design. Indianapolis, IN: Dog Ear Publishing,

2006.

See Also
PFD | Charge Pump

2 Blocks: PLL

2-114

PLL Testbench
Validate PLL system by measuring operating frequency, lock time, and phase noise

Libraries:
Mixed-Signal Blockset / PLL / Measurements & Testbenches

Description
The PLL Testbench block provides input stimulus in the form of a clock signal to a phase-locked loop
(PLL) system. The testbench also validates the performance of the PLL system by comparing the
operating frequency, lock time, and phase noise against the target metrics.

The PLL Testbench block generates the stimulus to drive the device under test (DUT) from the
Stimulus tab. The setup parameters for validating the DUT are defined in the Setup tab and the
target validation metrics are defined in the Target Metric tab.

Ports
Input

from pll — Input clock signal
scalar

Input clock signal to the PLL Testbench, specified as a scalar. The from pll port is connected to the
output of a PLL system.
Data Types: double

Output

to pll — Output clock signal
scalar

Output clock signal, returned as a sine or square wave as specified in the Signal type parameter. The
signal at the to pll port provides the stimulus to a PLL system.
Data Types: double

Parameters
Set stop time — Set recommended minimum simulation stop time as model stop time
button

Click to set the Recommended min. simulation stop time (s) reported by the PLL Testbench block
as the model stop time.

 PLL Testbench

2-115

Dependencies

This button is only available when Phase noise measurement option is selected in the Setup tab.

Plot phase noise profile — Plot phase noise profile of the PLL DUT
button

Click to plot the phase noise profile of the PLL device (DUT) and to compare it with the user-defined
phase noise profile after simulation is complete.
Dependencies

This button is only available when Phase noise measurement option is selected in the Setup tab.

Export measurement results — Export measurement results after simulation
button

Click to export measurement results to an excel spreadsheet (XLS) or as comma-separated values
(CSV) after the simulation is complete.

Stimulus

Signal type — Shape of clock signal going to PLL DUT
Square (default) | Sine

Shape of the clock signal going to the input of the PLL device under test (DUT). Choose between a
Sine or a Square wave.
Programmatic Use

• Use get_param(gcb,'SignalType') to view the current value of Signal type.
• Use set_param(gcb,'SignalType',value) to set Signal type to a specific value.

Amplitude (V) — Maximum value of stimulus signal at PLL input
1 (default) | real positive scalar

Maximum value of the stimulus signal at PLL input, specified as a real positive scalar.
Programmatic Use

• Use get_param(gcb,'InputAmplitude') to view the current value of Amplitude (V).
• Use set_param(gcb,'InputAmplitude',value) to set Amplitude (V) to a specific value.

Frequency (Hz) — Frequency of stimulus signal at PLL input
30e6 (default) | real positive scalar

Frequency of the stimulus signal at PLL input, specified as a real positive scalar.
Programmatic Use

• Use get_param(gcb,'ClkFreq') to view the current value of Frequency (Hz).
• Use set_param(gcb,'ClkFreq',value) to set Frequency (Hz) to a specific value.

Setup

Frequency of operation — Measure operating frequency of PLL DUT
on (default) | off

2 Blocks: PLL

2-116

Select to measure the operating frequency of the PLL DUT. By default, this option is selected.

Lock time — Measure locking time of PLL DUT
off (default) | on

Select to measure the locking time of the PLL DUT with user-specified error tolerance. By default,
this option is deselected.

Target frequency of operation (Hz) — Target operating frequency of PLL DUT to calculate lock time
2.1e9 (default) | real positive scalar

Target operating frequency of the PLL DUT to calculate the lock time of the PLL, specified as a real
positive scalar in Hz.

Dependencies

To enable this parameter, select the Lock time measurement option in the Setup tab.

Programmatic Use

• Use get_param(gcb,'ExpectedFreq') to view the current value of Target frequency of
operation(Hz).

• Use set_param(gcb,'ExpectedFreq',value) to set Target frequency of operation (Hz) to
a specific value.

Error tolerance (Hz) — Error tolerance for lock time measurement
1e6 (default) | real positive scalar

Error tolerance for lock time measurement, specified as a real positive scalar in Hz.

Dependencies

To enable this parameter, select the Lock time measurement option in the Setup tab.

Programmatic Use

• Use get_param(gcb,'FreqErrorTol') to view the current value of Error tolerance (Hz).
• Use set_param(gcb,'FreqErrorTol',value) to set Error tolerance (Hz) to a specific

value.

Phase noise — Measure phase noise level of PLL DUT
off (default) | on

Select to measure the phase noise level of the PLL DUT at user defined frequency offset points. By
default, this option is deselected.

Resolution bandwidth (Hz) — Smallest positive frequency that can be resolved
200e3 (default) | real positive scalar

Smallest positive frequency that can be resolved, specified as a real positive scalar. The Resolution
bandwidth (Hz) is used to determine window length for spectral analysis using the Welch method.
For more information, see “Welch's Method of Averaged Modified Periodograms”.

In general, Resolution bandwidth (Hz) should be less than or equal to the lowest offset frequency
value.

 PLL Testbench

2-117

Dependencies

To enable this parameter, select the Phase noise measurement option in the Setup tab.
Programmatic Use

• Use get_param(gcb,'ResBandwidth') to view the current value of Resolution bandwidth
(Hz).

• Use set_param(gcb,'ResBandwidth',value) to set Resolution bandwidth (Hz) to a
specific value.

No. of spectral averages — Number of spectral averages
4 (default) | positive integer scalar

Number of spectral averages, specified as a positive integer scalar. The dsp.SpectrumEstimator
System object used by the Phase Noise Measurement subsystem inside the PLL Testbench block
computes the current power spectrum or power density spectrum estimate by averaging over the
number specified by No. of spectral averages.
Dependencies

To enable this parameter, select the Phase noise measurement option in the Setup tab.
Programmatic Use

• Use get_param(gcb,'SpectralAverages') to view the current value of No. of spectral
averages.

• Use set_param(gcb,'SpectralAverages',value) to set No. of spectral averages to a
specific value.

Hold off time (s) — Delays measurement analysis to avoid transients
0 (default) | real nonnegative scalar

Delays measurement analysis by the specified amount of time to avoid corruption by transients,
specified as a real nonnegative scalar in s.

To enable this parameter, select the Phase noise measurement option in the Setup tab.
Programmatic Use

• Use get_param(gcb,'HoldOffTime') to view the current value of Hold off time (s).
• Use set_param(gcb,'HoldOffTime',value) to set Hold off time (s) to a specific value.

Frequency offset vector (Hz) — Frequency points relative to fundamental frequency where phase
noise is calculated
[300e3 1e6 3e6 10e6] (default) | real valued vector

Frequency points relative to fundamental frequency where phase noise is calculated, specified as a
real valued vector in Hz. This values are also reported in the Target Metrics tab as Phase noise
frequency offset (Hz).

To enable this parameter, select the Phase noise measurement option in the Setup tab.
Programmatic Use

• Use get_param(gcb,'PhaseNoiseFreqOffset') to view the current value of Frequency
offset vector (Hz).

2 Blocks: PLL

2-118

• Use set_param(gcb,'PhaseNoiseFreqOffset',value) to set Frequency offset vector
(Hz) to a specific value.

Target Metrics

Frequency of operation — Target operating frequency at which PLL needs to lock
2.1e9 (default) | real positive scalar

Target operating frequency at which PLL DUT needs to lock, specified as a real positive scalar in Hz.

If you select the Lock time as a measurement option, the Frequency of operation is reported from
the Target frequency of operation (Hz) parameter.
Dependencies

To enable this parameter, select the Frequency of operation measurement option in the Setup tab.
Programmatic Use

• Use get_param(gcb,'TargetFreq') to view the current value of Frequency of operation.
• Use set_param(gcb,'TargetFreq',value) to set Frequency of operation to a specific

value.

Lock time (s) — Maximum time in which PLL DUT needs to get locked
3e-6 (default) | real nonnegative scalar

Maximum time in which PLL DUT needs to get locked, specified as a real nonnegative scalar in s.
Dependencies

To enable this parameter, select the Lock time measurement option in the Setup tab.
Programmatic Use

• Use get_param(gcb,'TargetLockTime') to view the current value of Lock time.
• Use set_param(gcb,'TargetLockTime',value) to set Lock time to a specific value.

Phase noise (dBc/Hz) — Target noise power corresponding to frequency offset vector
[-85,-125,-150,-180] (default) | real valued vector

Target noise power level relative to the carrier in a 1 Hz frequency bandwidth centered at the
frequencies specified in the Frequency offset vector (Hz) parameter, specified as a real valued
vector in dBc/Hz.
Dependencies

To enable this parameter, select the Phase noise measurement option in the Setup tab.
Programmatic Use

• Use get_param(gcb,'TargetPhaseNoiseVector') to view the current value of Phase noise.
• Use set_param(gcb,'TargetPhaseNoiseVector',value) to set Phase noise to a specific

value.

Version History
Introduced in R2019a

 PLL Testbench

2-119

See Also
Fractional N PLL with Analog Compensation | Fractional N PLL with Delta Sigma Modulator | Integer
N PLL with Dual Modulus Prescaler | Integer N PLL with Single Modulus Prescaler

2 Blocks: PLL

2-120

VCO Testbench
Validate voltage controlled oscillator (VCO) by measuring phase noise metrics or VCO characteristics

Libraries:
Mixed-Signal Blockset / PLL / Measurements & Testbenches

Description
The VCO Testbench block validates the VCO device under test (DUT) by measuring one of the two
target metrics: phase noise, or voltage sensitivity and quiescent frequency. You can use the testbench
to validate a VCO of your own implementation, or you can use the VCO block from the Mixed-Signal
Blockset.

The VCO Testbench block generates the stimulus (control voltage) to drive the device under test
(DUT) from the Stimulus tab. The setup parameters for validating the DUT are defined in the Setup
tab and the target validation metrics are defined in the Target Metric tab.

To take the full advantage of the VCO testbench capabilities by using autofill parameters options, use
only two blocks, the VCO DUT and the VCO Testbench in the Simulink model.

Ports
Input

from vco — Input signal
scalar

Input signal, which flows from the output of the VCO DUT. This input signal is used to calculate either
the phase noise metric, or the voltage sensitivity and free running frequency of the VCO, depending
on the Measurement option chosen.
Data Types: double

Output

to vco — Output signal
scalar

Output signal, which provides control voltage stimulus to the input of VCO DUT.
Data Types: double

Parameters
Measurement — Target metric to be measured

Phase noise (default) | Kvco and Fo

 VCO Testbench

2-121

Determines which of the two given target metrics is being measured.

Select Phase noise if you want the testbench to measure and compare phase noise to a target
phase noise profile.

Select Kvco and Fo if you want the testbench to compute voltage sensitivity (Kvco) and quiescent
frequency (Fo) using a range of control voltages.

Programmatic Use

• Use get_param(gcb,'MeasureOptions') to view the current Measurement option.
• Use set_param(gcb,'MeasureOptions',value) to set Measurement to a specific option.

Set stop time — Set recommended minimum simulation stop time as model stop time
button

Click to set the Recommended min. simulation stop time (s) reported by the VCO Testbench
block as the model stop time.

Dependencies

This button is only available when you select Phase noise as the Measurement option.

Plot measurement — Plot measurements
button

Plots the relevant VCO metrics based on the Measurement options.

Selecting Phase noise in Measurement plots phase noise profile of VCO.

Selecting Kvco and Fo in Measurement plots the VCO characteristics and Kvco.

Export measurement results — Export measurement results
button

Exports the relevant VCO metrics based on the Measurement options to an excel file.

Selecting Phase noise in Measurement exports the phase noise profile of VCO.

Selecting Kvco and Fo in Measurement exports the VCO characteristics and Kvco.

Stimulus

Control voltage (V) — VCO control voltage
2 (default) | scalar

Control voltage provided by VCO Testbench, expressed as a scalar in V. The value specified in
Control Voltage (V) flows through the to vco port that provides the input of VCO.

Dependencies

To enable this parameter, select Phase noise as the Measurement option.

Programmatic Use

• Use get_param(gcb,'ControlVoltage') to view current Control Voltage (V) value.

2 Blocks: PLL

2-122

• Use set_param(gcb,'ControlVoltage',value) to set Control Voltage (V) to a specific
value.

Data Types: double

Range of control voltage (V) — Range of VCO control voltages
[2 7] (default) | two-element row vector

Control voltage provided by VCO Testbench, expressed as a two-element row vector in V. This
parameter specifies the minimum and maximum values of control voltage, which is used to generate
ten control voltage value points, including the provided values. These ten values of control voltage
are sent to VCO input to measure Kvco and Fo.
Dependencies

To enable this parameter, select Kvco and Fo as the Measurement option.
Programmatic Use

• Use get_param(gcb,'ControlVoltageRange') to view the current Range of control
voltage (V) values.

• Use set_param(gcb,'ControlVoltage',value) to set Range of control voltage (V) to
specific values.

Data Types: double

Setup

Autofill setup parameters — Automatically calculate setup parameters for phase noise
measurement
button

Click this button to automatically populate setup parameters (Resolution bandwidth (Hz) and No.
of spectral averages) for phase noise measurement.

If the DUT is a VCO from Mixed-Signal Blockset, the dsp.SpectrumEstimator System object used
by the VCO Testbench block for phase noise measurement automatically calculates setup parameters
based on the VCO specifications.
Dependencies

• This button only works if the VCO DUT is a VCO block from Mixed-Signal Blockset.

• This button is only available when you select Phase noise as the Measurement option.

Resolution bandwidth (Hz) — Smallest positive frequency that can be resolved
30e3 (default) | real positive scalar

Smallest positive frequency that can be resolved, specified as a real positive scalar. The Resolution
bandwidth (Hz) is used to determine window length for spectral analysis using the Welch method.
For more information, see “Welch's Method of Averaged Modified Periodograms”.

In general, Resolution bandwidth (Hz) should be less than or equal to the lowest offset frequency
value.

If the DUT is a VCO block from the Mixed-Signal Blockset library, you can use the Autofill setup
parameters button to automatically calculate Resolution bandwidth (Hz).

 VCO Testbench

2-123

Dependencies

To enable this parameter, select Phase noise as the Measurement option.

Programmatic Use

• Use get_param(gcb,'ResBandwidth') to view current Resolution bandwidth (Hz) value.
• Use set_param(gcb,'ResBandwidth',value) to set Resolution bandwidth (Hz) to a
specific value.

Data Types: double

No. of spectral averages — Number of spectral averages
8 (default) | positive integer scalar

Number of spectral averages, specified as a positive integer scalar. The dsp.SpectrumEstimator
System object used by the Phase Noise Measurement subsystem inside the VCO Testbench block
computes the current power spectrum or power density spectrum estimate by averaging over the
number specified by No. of spectral averages.

If the DUT is a VCO block from the Mixed-Signal Blockset library, you can use the Autofill setup
parameters button to automatically calculate number of spectral averages.

Dependencies

To enable this parameter, select Phase noise as the Measurement option.

Programmatic Use

• Use get_param(gcb,'SpectralAverages') to view current No. of spectral averages value.
• Use set_param(gcb,'SpectralAverages',value) to set No. of spectral averages to a
specific value.

Data Types: double

Hold-off time (s) — Delays measurement analysis to avoid transients
0 (default)

Hold-off period, specified as a nonnegative scalar in s. Hold-off time delays measurement analysis
by the specified amount of time to avoid corrupting simulation results due to transients.

Programmatic Use

• Use get_param(gcb,'HoldOffTime') to view the current Hold-off time (s) value.
• Use set_param(gcb,'HoldOffTime',value) to set Hold-off time (s) to a specific value.

Target Metric

Autofill target metric — Automatically populate target phase noise metric
button

Click this button to automatically populate the target phase noise metric from VCO specifications.

Dependencies

• This button will only work if the VCO DUT is a VCO block from Mixed-Signal Blockset.

2 Blocks: PLL

2-124

• This button is only available when you select Phase noise as Measurement option.

Phase noise frequency offset vector (Hz) — Phase noise frequency offset vector
[30e3 100e3 1e6 3e6 10e6] (default) | real valued vector

The frequency offsets of phase noise from the carrier frequency, collected from the data sheet,
specified as a real valued vector in Hz.

If the DUT is a VCO block from the Mixed-Signal Blockset library, you can use the Autofill target
metric button to automatically transfer VCO phase noise frequency offset vector values to the VCO
Testbench.

Dependencies

To enable this parameter, select Phase noise as the Measurement option.

Programmatic Use

• Use get_param(gcb,'PhaseNoiseFreqOffset') to view the current Phase noise frequency
offset vector (Hz) value.

• Use set_param(gcb,'PhaseNoiseFreqOffset',value) to set Phase noise frequency
offset vector (Hz) to a specific value.

Data Types: double

Phase noise vector (dBc/Hz) — Phase noise vector
[-45 -55 -65 -75 -100] (default) | real valued vector

The phase noise power in a 1 Hz bandwidth centered at the specified frequency offsets relative to the
carrier, collected from the data sheet, specified as a real valued vector in dBc/Hz. The elements of
Phase noise vector (dBc/Hz) corresponds to relative elements in the Phase noise frequency
offset vector (Hz).

If the DUT is a VCO block from the Mixed-Signal Blockset library, you can use the Autofill target
metric button to automatically transfer VCO phase noise vector values to the testbench.

Dependencies

To enable this parameter, select Phase noise as the Measurement option.

Programmatic Use

• Use get_param(gcb,'PhaseNoiseVector') to view the current Phase noise vector
(dBc/Hz) value.

• Use set_param(gcb,'PhaseNoiseVector',value) to set Phase noise vector (dBc/Hz) to a
specific value.

More About
Inside VCO Testbench

The VCO Testbench subsystem block consists of a Step block and a subsystem that contains two
variants: a Phase-noise measurement subsystem and a Frequency detector subsystem. The variant
subsystems are enabled based on the selection of the Measurement option in the block parameters
dialog box.

 VCO Testbench

2-125

Inside the Step block, the Step time is set to Hold-off time (s) value and delays the measurement
analysis by the specified time.

Phase Noise Measurement

The Phase-noise subsystem is activated when Phase noise is selected as the Measurement option.
The subsystem uses the zero crossing points of a signal to measure the phase noise. From the zero
crossing points, the phase error (φ)is extracted both at the rising and falling edge of the signal. The
captured phase error is used to generate a periodic signal (sin(φ)). This periodic signal is interpolated
using a fixed time step proportional to the maximum phase noise frequency offset. The power density
of the modified phase noise signal, using the dsp.SpectrumEstimator System object, directly
provides the phase noise profile of the signal of interest.

Voltage Sensitivity and Free Running Frequency Measurement

The Frequency detector subsystem is activated when Kvco and Fo is selected as the Measurement
option. The subsystem spreads the range of control voltage over 10 points using their minimum and
maximum values. A VCO characteristics curve is generated for each point. Voltage sensitivity (Kvco) is
calculated by taking the average of slopes between each points. Quiescent frequency (Fo) is
extrapolated at control voltage zero.

Version History
Introduced in R2019a

References
[1] Banerjee, Dean. PLL Performance, Simulation and Design. Indianapolis, IN: Dog Ear Publishing,

2006.

See Also
VCO

2 Blocks: PLL

2-126

Blocks: Utilities

3

Linear Circuit Wizard
Generate or modify linear circuit

Libraries:
Mixed-Signal Blockset / Utilities

Description
Use the Linear Circuit Wizard block to create or modify a linear, time-invariant circuit such as a
custom-design filter or a circuit with extracted parasitics. Using this block, you can parse a SPICE
netlist file that describes the circuit elements and the circuit nodes. You can then use the block
parameter dialog box to refine the input and output ports and to model device noise. You can review
the port and device noise definitions from a base workspace output structure.

The Linear Circuit Wizard block sets up and solves linear circuit equations to produce a set of
Laplace domain transfer functions. You can review these transfer functions either through magnitude
vs. frequency plots or through pole-zero location reports.

The Linear Circuit Wizard block creates and configures a MATLAB System block to represent your
circuit as a new block, which is independent of the Linear Circuit Wizard block, in a Simulink model.
This MATLAB System block is configured using the port and device noise definitions and the results
of the circuit analysis. When you start the simulation, the MATLAB System block uses fixed-step
discrete sample time to convert the Laplace domain transfer functions into recursive digital filter
coefficients for execution during the simulation.

The Linear Circuit Wizard block can generate:

• a linear circuit block,
• a switched circuit block,
• or a Control System Toolbox tunable object.

Parameters
Circuit Definition

Circuit design name — Name of circuit displayed on block icon
'Linear Circuit' (default) | character vector | string scalar

Name of the circuit that is displayed on the block icon, specified as a character vector or string
scalar.

Programmatic Use
Block parameter: CircuitDesignName
Type: character vector
Value: character string
Default: 'Linear Circuit'

3 Blocks: Utilities

3-2

Block name — Instance name displayed under block icon
'Linear Circuit' (default) | character vector | string scalar

Instance name to be displayed under the block icon, specified as a character vector or string scalar.

Programmatic Use
Block parameter: BlockName
Type: character vector
Value: character string
Default: 'Linear Circuit'

Netlist file name — Name of netlist file that defines circuit
character vector | string scalar

Name of the netlist file (SPICE syntax) that defines the linear circuit, specified as a character vector
or string scalar.

Programmatic Use
Block parameter: NetlistFileName
Type: character vector
Value: character string

Configuration name — Name of configuration file
character vector | string scalar

Name of the configuration file, specified as a character vector or string scalar. You can save your
current configuration to a file.

Programmatic Use
Block parameter: ConfigurationName
Type: character vector
Value: character string

Parse netlist file and start new configuration — Parse named netlist file
button

Click to parse the named netlist file. This action redefines the existing ports according to the new
SPICE syntax. For more information, see “Model Linear Circuit Response from SPICE Netlist”.

Save configuration — Save current configuration to file
button

Click to save the current circuit configuration to a file whose name is specified in the Configuration
name.

Load configuration — Load existing configuration file
button

Click to load the current circuit configuration from the file whose name is specified in the
Configuration name parameter.

Attach configuration to block — Attach selected configuration file to Simulink block
on (default) | off

Select to attach the selected configuration file to the Simulink block when it is built by the Linear
Circuit Wizard block.

 Linear Circuit Wizard

3-3

Build Simulink block — Create Simulink block or object to model circuit defined by netlist
button

Click to create a Simulink block or object to model the circuit defined by SPICE netlist.

If switch states have been defined for the circuit, the constructed block will be a switched circuit
block. Otherwise it will be a linear circuit block.

Linear Analysis

Pole/zero report — Add pole -zero report to base workspace
on (default) | off

Select to add a structure containing the pole-zero report to the base workspace when the linear
circuit is analyzed.

Transfer function plot — Plot transfer functions
on (default) | off

Select to plot all transfer functions of the linear circuit when the linear circuit is analyzed.

Linear control system — Add matrices for control system differential equations to base workspace
on (default) | off

Select to add a structure containing the matrices for the control system differential equations to the
base workspace when the linear circuit is analyzed.

Analyze — Analyze linear circuit to produce selected outputs
button

Click to analyze the linear circuit and produce the selected outputs.

Operating Point Analysis

Output port — Outport port for primary output value
drop-down menu created from port definitions

Select the output port for the primary output value from a drop-down menu. The drop-down menu
remains empty until you parse the netlist to define the ports.

Steady state output value(s) — Desired primary output value(s)
0 (default) | scalar | vector

Desired primary output value(s), specified as a scalar or a vector.

Programmatic Use
Block parameter: OutputValues
Type: character vector
Value: scalar | vector
Default: 0

Primary control variable — Variable used to regulate output
Duty cycle (default) | Frequency

The variable the block uses to regulate the output. Choose between Duty Cycle or Frequency.

3 Blocks: Utilities

3-4

Programmatic Use
Block parameter: ControlVariable
Type: character vector
Value: Duty cycle | Frequency
Default: Duty cycle

Duty cycle value [min,max] — Minimum control duty cycle
0 (default) | scalar | 2-element vector

Control duty cycle, defined on a scale from 0 to 1. You can specify a scalar to be applied to all
analyses, or you can specify the minimum and maximum of a range of control duty cycles as a 2-
element vector thus producing a plot of output value as a function of control duty cycle.

Programmatic Use
Block parameter: DutyCycle
Type: character vector
Value: scalar | 2-element vector
Default: 0

Frequency [min,max] — Minimum control frequency
0 (default) | scalar | 2-element vector

Control signal frequency. You can specify a scalar to be applied to all analyses, or you can specify the
minimum and maximum of a range of frequencies as a 2-element vector thus producing a plot of
output value as a function of control signal frequency.

Programmatic Use
Block parameter: Frequency
Type: character vector
Value: scalar | 2-element vector
Default: 0

Phase offset(s) — Phase of rising edge of control signal as fraction of control cycle
0 (default) | scalar | vector

Phase of the rising edge of the control signal(s) as a fraction of control cycle (0,1), specified as a
scalar (single control signal) or vector (multiple control signals).

You can use the variable d to represent the control duty cycle or f to represent the switching
frequency.

Programmatic Use
Block parameter: PhaseOffsets
Type: character vector
Value: scalar | vector
Default: 0

Pulse Duration(s) — Pulse duration of control signal as function of control cycle
0 (default) | scalar | vector

Pulse duration of the control signals as a function of the control cycle (0,1), specified as a scalar
(single control signal) or vector (multiple control signals).

You can use the variable d to represent the control duty cycle or f to represent the switching
frequency.

 Linear Circuit Wizard

3-5

Programmatic Use
Block parameter: PulseDuration
Type: character vector
Value: scalar | vector
Default: 0

Samples per waveform — Number of samples in single switching cycle output wave
1024 (default) | positive integer scalar

Number of samples in a single steady state switching cycle output wave, specified as a positive
integer scalar.
Programmatic Use
Block parameter: WaveSamples
Type: character vector
Value: scalar
Default: 1024

Analyze operating point — Operating point analysis of switched circuit
button

Click to perform the switched-mode power train operating point analysis of the switched circuit.

More About
SPICE Netlist

The Linear Circuit Wizard block solves a linear, time-invariant circuit described by a SPICE netlist.
The block supports a limited set of SPICE circuit elements and netlist statement syntaxes. For more
information about supported circuit elements and netlist statement syntaxes, see “Model Linear
Circuit Response from SPICE Netlist”.

Ports

The ports in the Linear Circuit Wizard block are initially parsed from the SPICE netlist. Once the
ports are defined, you can add, delete, or modify the order of the ports from the Linear Circuit Wizard
block parameter dialog.. The supported ports can either be input or output, and either be voltage or
current.

Note The signals at both the input and output ports must use a fixed step discrete sample time equal
to the block’s sample time.

The most common interface definition for an analog circuit is a set of voltages and currents defined at
circuit nodes. To create the interface to digital logic and behavioral models from the interface to
analog circuits requires some conversion. The Linear Circuit Wizard block constructs the conversion
between ports and analog circuit nodes based on the ports definitions that you supply. This enables
the Linear Circuit Wizard block to produce a block in your Simulink model that can be connected
directly to other types of blocks. For more information, see “Ports Supported in Linear Circuit
Wizard”.

Device Noise

The Linear Circuit Wizard block can model the noise generated by the transistors and resistors in the
analog circuit. The spectral density of the device noise can include accurate modeling of flicker noise.

3 Blocks: Utilities

3-6

The circuit model includes the transfer function from the device noise source to the circuit ports. For
more information, see “Define Device Noise Using Linear Circuit Wizard”.

Results

The Linear Circuit Wizard block outputs a linear circuit block that can be added to the Simulink
model. This block is a MATLAB System block with all the input and output ports defined in the Linear
Circuit Wizard block parameter dialog box. The generated block requires a fixed-step discrete sample
time, which the block either inherits from the surrounding model or defines for itself. For more
information, see “MATLAB Systems Generated from Linear Circuit Wizard”.

The Linear Circuit Wizard block can generate multiple MATLAB System blocks that represent
different linear circuit blocks. Once generated, the MATLAB System blocks are independent of their
respective Linear Circuit Wizard blocks.

Independent of the generation of MATLAB System blocks, the Linear Circuit Wizard block can also
generate a report for ports of the generated block, a report for poles and zeroes of the entire linear
circuit, and plot the transfer functions between the input and output ports. For more information, see
“Verify MATLAB System Block Configuration”.

Version History
Introduced in R2020b

See Also
Topics
“Circuit Design Details Affect PLL Performance”
“Analyze T-Coil Circuit”
“Feedback Amplifier Design for Voltage-Mode Boost Converter”
“Boost Power Train Operating Point Analysis”
“Model Linear Circuit Response from SPICE Netlist”
“Define Device Noise Using Linear Circuit Wizard”
“Ports Supported in Linear Circuit Wizard”
“MATLAB Systems Generated from Linear Circuit Wizard”

 Linear Circuit Wizard

3-7

Logic Decision
Threshold crossing detector at input to binary process

Libraries:
Mixed-Signal Blockset / Utilities

Description
Logic Decision block produces an output event at a fixed delay from almost exactly the time the input
signal crosses a decision threshold. This block helps transitioning from a uniformly sampled input
waveform to an event driven digital logic subsystem.

Ports
Input

wave — Input signal
fixed step sampling | variable step sampling | scalar

Input signal, specified as a floating point scalar. The input signal can either be inherited, or defined
by the Logic Decision block as a fixed step discrete sample time.
Data Types: double | Boolean

vth — Decision threshold value
scalar

Decision threshold value, specified as a scalar. The value at vth port determines when the input
signal is delayed by a fixed amount.
Data Types: floating point

Output

events — Output signal
0 | 1

Output signal, returned as either 0 or 1.
Data Types: double | Boolean

Parameters
Sample time — Source of sample time
Inherited (default) | Fixed

Source of sample time.

3 Blocks: Utilities

3-8

• Select Inherited to inherit sample time from previous block.
• Select Fixed to set discrete sample time to a fixed value.

Programmatic Use

• Use get_param(gcb,'SampleTimeSource') to view the current source of Sample time.
• Use set_param(gcb,'SampleTimeSource',value) to set Sample time to a specific value.

Sample time value — Actual value of sample time
20e-12 (default) | real scalar excluding zero

Actual value of sample time, specified as a real scalar excluding zero.

Dependencies

To enable this parameter, select Fixed in Sample time parameter.

Programmatic Use

• Use get_param(gcb,'SampleTimeIn') to view the current Sample time value.
• Use set_param(gcb,'SampleTimeIn',value) to set Sample time value to a specific value.

Minimum delay value — Minimum propagation delay value
1e-15 (default) | positive scalar

The minimum propagation delay for the block, specified as a positive scalar. For a fixed discrete input
sample time, the actual delay is the maximum of this parameter value and the fixed step size.

Programmatic Use

• Use get_param(gcb,'Delay') to view the current Minimum delay value.
• Use set_param(gcb,'Delay',value) to set Minimum delay value to a specific value.

Buffer size — Number of threshold crossings to buffer
1 (default) | positive integer scalar

The number of pending output events that can be stored in the block, specified as a positive integer
scalar.

Programmatic Use

• Use get_param(gcb,'BufferSizeIn') to view the current Buffer size.
• Use set_param(gcb,'BufferSizeIn',value) to set Buffer size to a specific value.

Version History
Introduced in R2019a

See Also
Slew Rate | Variable Pulse Delay

 Logic Decision

3-9

Slew Rate
Model amplitude, rise and fall times, and propagation delay of logic gates

Libraries:
Mixed-Signal Blockset / Utilities

Description
The Slew Rate block converts a logical signal to a signal with user-defined finite slew rate and
propagation delay.

Ports
Input

events — Input signal
scalar

Variable step, event driven input signal, specified as a scalar. The signal at events port comes from
the output of a logic gate such as Variable Pulse Delay block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

Output

wave — Output signal
scalar

Fixed step, uniformly sampled output signal, returned as a scalar. You can define the finite slew rate
and propagation delay for the signal at the wave port.
Data Types: double

Parameters
Output step size calculation — Defines how to calculate output step size
Default (default) | Advanced

Defines how to calculate output step size.

• Choose Default to calculate Output step size calculation based on rise/fall time. The Output

sample interval (ΔT) is given by ΔT = Rise/fall time 2

6 · 0.22 .

• Choose Advanced to calculate Output step size calculation based on frequency of interest. The
Output sample interval (ΔT) is given by ΔT = Rise/fall time

6 · Maximum frequency of interest.

3 Blocks: Utilities

3-10

Programmatic Use

• Use get_param(gcb,'DefaultOrAdvanced') to determine how the output step size is being
calculated.

Maximum frequency of interest (Hz) — Maximum frequency of interest at output
11e9 (default) | scalar

Maximum frequency of interest at output, specified as a scalar in Hz. Maximum frequency of
interest is used to calculate Output sample interval and Minimum 20%-80% rise/fall time.

Dependencies

This parameter is only available when Advanced is selected for Output step size calculation.

Programmatic Use

• Use get_param(gcb,'MaxFreqInterest') to view the current value of Maximum frequency
of interest.

• Use set_param(gcb,'MaxFreqInterest',value) to set Maximum frequency of interest to
a specific value.

Output sample interval — Output sample interval
23ps (default) | scalar

Output sample interval, specified as a scalar in s. This parameter is nontunable.

The Output sample interval (ΔT) is given by ΔT = Rise/fall time
6 · Maximum frequency of interest.

Dependencies

This parameter is only available when Advanced is selected for Output step size calculation.

Programmatic Use

• Use get_param(gcb,'OutputSampleTime') to view the current value of Output sample
interval.

• Use set_param(gcb,'OutputSampleTime',value) to set Output sample interval to a
specific value.

Minimum 20%-80% rise/fall time — Minimum rise/fall time required at the output for meaningful
simulation
23ps (default) | scalar

Minimum rise/fall time required at the output for meaningful simulation, specified as a scalar in ps.
This is a nontunable parameter.

Dependencies

This parameter is only available when Advanced is selected for Output step size calculation.

Programmatic Use

• Use get_param(gcb,'ConversionRiseFall') to view the current value of Minimum
20%-80% rise/fall time.

 Slew Rate

3-11

• Use set_param(gcb,'ConversionRiseFall',value) to set Minimum 20%-80% rise/fall
time to a specific value.

Rise/fall time (s) — 20%-80% rise time at the output
30e-12 (default) | scalar

Time required for signal to change from 20% to 80% in a full amplitude edge at the output, specified
as a scalar.

Programmatic Use

• Use get_param(gcb,'RiseTime') to view the current value of Rise/fall time.
• Use set_param(gcb,'RiseTime',value) to set Rise/fall time to a specific value.

Slew rate for 20%-80% edge of unit amplitude signal — Slew rate for the 20%-80% edge at the
output
56GHz (default) | scalar

Slew rate for the 20%-80% edge at the output, specified as a scalar. This parameter is nontunable.

Programmatic Use

• Use get_param(gcb,'RisingSlewRate') to view the current value of Slew rate for 20%-80%
edge of unit amplitude signal.

• Use set_param(gcb,'RisingSlewRate',value) to set Slew rate for 20%-80% edge of unit
amplitude signal to a specific value.

Minimum propagation delay — Minimum propagation delay for meaningful simulation
48ps (default) | scalar

Minimum propagation delay for meaningful simulation, specified as a scalar. This parameter is
nontunable.

Minimum propagation delay is calculated from Maximum frequency of interest where
Minimum propagation delay = 0.269

Maximum frequency of interest.

Programmatic Use

• Use get_param(gcb,'ConversionDelay') to view the current value of Minimum
propagation delay.

• Use set_param(gcb,'ConversionDelay',value) to set Minimum propagation delay to a
specific value.

Propagation delay (s) — Propagation delay of a rising edge
48e-12 (default) | scalar

Propagation delay of a rising edge, specified as a scalar in s. Propagation delay is measured at a
threshold equal to the half of the amplitude.

Programmatic Use

• Use get_param(gcb,'RisepropDelay') to view the current value of Propagation delay.
• Use set_param(gcb,'RisePropDelay',value) to set Propagation delay to a specific value.

3 Blocks: Utilities

3-12

Enable increased buffer size — Enable increased buffer size
button

Select to enable increased buffer size during the simulation. This increases the buffer size of all the
blocks in the PLL model that belong to the Mixed-Signal Blockset/Utilities Simulink library. By
default, this option is deselected.

Buffer size — Buffer size of the blocks
10 (default) | positive integer scaler

Buffer size of all the blocks in the PLL model that belong to the Mixed-Signal Blockset/Utilities
Simulink library.

Selecting different simulation solver or sampling strategies can change the number of input samples
needed to produce an accurate output sample. Set the Buffer size to a large enough value so that
the input buffer contains all the input samples required.

Dependencies

This parameter is only available when the Enable increased buffer size option is selected.

Programmatic Use

• Use get_param(gcb,'NBuffer') to view the current value of Buffer size.
• Use set_param(gcb,'NBuffer',value) to set Buffer size to a specific value.

Version History
Introduced in R2019a

See Also
Logic Decision | Variable Pulse Delay

 Slew Rate

3-13

Timing Measurement
Measure period, frequency, duty cycle, rise time, fall time, and delay of a signal

Libraries:
Mixed-Signal Blockset / Utilities

Description
The Timing Measurement block measures the basic timing metrics such as period, frequency, duty
cycle, rise time, fall time, and delay of a signal.

Ports
Input

reference — Input signal
scalar

Input signal whose timing metrics are being measured, specified as a scalar.
Data Types: double

test — Test signal
scalar

Test signal against which the delay of the input signal is measured, specified as a scalar.

Dependencies

To enable this port, select Delay as a measurement option in the Selection tab.
Data Types: double

Output

period — Period of input signal
scalar

Period of the input signal, returned as a scalar.
Data Types: double

frequency — Frequency of input signal
scalar

Frequency of the input signal, returned as a scalar.

Dependencies

To enable this port, select Frequency as a measurement option in the Selection tab.

3 Blocks: Utilities

3-14

Data Types: double

rise time — Rise time of input signal
scalar

Rise time of the input signal, returned as a scalar.

Dependencies

To enable this port, select Rise Time as a measurement option in the Selection tab.
Data Types: double

fall time — Fall time of input signal
scalar

Fall time of the input signal, returned as a scalar.

Dependencies

To enable this port, select Fall time as a measurement option in the Selection tab.
Data Types: double

duty cycle — Duty cycle of input signal
scalar

Duty cycle of the input signal, returned as a scalar.

Dependencies

To enable this port, select Duty Cycle as a measurement option in the Selection tab.
Data Types: double

delay — Delay of input signal
scalar

Delay of the input signal, returned as a scalar.

Dependencies

To enable this port, select Delay as a measurement option in the Selection tab.
Data Types: double

Parameters
Selection

Period — Measure period of input signal
on (default) | off

Select to measure the period of the input signal.

Period is defined as the time required to complete one full cycle of a periodic signal, specified in
seconds.

 Timing Measurement

3-15

Frequency — Measure frequency of input signal
off (default) | on

Select to measure the frequency of the input signal.

Frequency is defined as the number of cycles completed per unit of time by a periodic signal,
specified in hertz. It is the inverse of Period.

Rise Time — Measure rise time of input signal
off (default) | on

Select to measure the rise time of the input signal.

Rise time is defined as the time required by the rising edge of the signal to reach from 10% to 90%
(or 20% to 80%) of its steady state value, specified in seconds.

Fall Time — Measure fall time of input signal
off (default) | on

Select to measure the fall time of the input signal.

Fall time is defined as the time required by the falling edge of the signal to go from 90% to 10% (or
80% to 20%) of its steady state value, specified in seconds.

Duty Cycle — Measure duty cycle of input signal
off (default) | on

Select to measure the duty cycle of the input signal.

Duty cycle is defined as the ratio of positive pulse width to period, specified as a fraction.

Delay — Measure delay of input signal
off (default) | on

Select to measure the delay of the input signal.

Delay is defined as the time difference between the threshold crossing points between the signal of
interest against a test signal, specified in seconds.

Configuration

Use same reference threshold for all measurements — Use the same reference threshold for
measuring all timing metrics
on (default) | off

Select to use the same reference threshold for measuring all timing metrics.

Reference threshold (V) — Reference threshold used for measuring timing metrics
0 (default) | scalar

Reference threshold voltage used for measuring all timing metrics, specified as a scalar in volts.

Dependencies

To enable this parameter, select Use same reference threshold for all measurements in the
Configuration tab.

3 Blocks: Utilities

3-16

Programmatic Use

• Use get_param(gcb,'SameRefThreshold') to view the current value of Reference
threshold (V).

• Use set_param(gcb,'SameRefThreshold',value) to set Reference threshold (V) to a
specific value.

Period/Frequency

Reference threshold (V) — Reference threshold voltage used to measure period and/or frequency
0 (default) | scalar

Reference threshold voltage used to measure the period and/or the frequency of the signal of
interest, specified as a scalar in volts.

Dependencies

To enable this parameter, deselect Use same reference threshold for all measurements in the
Configuration tab and select Period and/or Frequency in the Selection tab.

Programmatic Use

• Use get_param(gcb,'PeriodRefThreshold') to view the current value of Reference
threshold (V).

• Use set_param(gcb,'PeriodRefThreshold',value) to set Reference threshold (V) to a
specific value.

Rise/Fall Time

Input range (V) — Peak-to-peak value of input signal
[-1 1] (default) | 2-element row vector

Peak-to-peak value of the input signal, specified as a 2-element row vector in volts. The first element
defines the notch value of the input signal and the second element defines the peak value. Input
range (V) is used to calculate the upper and lower threshold levels to calculate the rise/fall times.

Dependencies

To enable this parameter, select Rise Time and/or Fall Time in the Selection tab.

Programmatic Use

• Use get_param(gcb,'Range') to view the current value of Reference threshold (V).
• Use set_param(gcb,'Range',value) to set Reference threshold (V) to a specific value.

Type — Input threshold levels to measure rise/fall times
80%/20% (default) | 90%/10%

Determines the input threshold levels to measure the rise/fall times, specified as either 80%/20% or
90%/10%.

Dependencies

To enable this parameter, select Rise Time and/or Fall Time in the Selection tab.

 Timing Measurement

3-17

Programmatic Use

• Use get_param(gcb,'MeasurementType') to view the current value of Reference threshold
(V).

• Use set_param(gcb,'MeasurementType',value) to set Reference threshold (V) to a
specific value.

Duty Cycle

Reference threshold (V) — Reference threshold voltage used to measure duty cycle
0 (default) | scalar

Reference threshold voltage used to measure the duty cycle of the signal of interest, specified as a
scalar in volts.
Dependencies

To enable this parameter, deselect Use same reference threshold for all measurements in the
Configuration tab and select Duty Cycle in the Selection tab.
Programmatic Use

• Use get_param(gcb,'DcRefThreshold') to view the current value of Reference threshold
(V).

• Use set_param(gcb,'DcRefThreshold',value) to set Reference threshold (V) to a
specific value.

Delay

Reference threshold (V) — Threshold voltage level in signal of interest used to measure delay
0 (default) | scalar

Threshold voltage level in reference signal of interest whose delay is being measured, specified as a
scalar in volts.
Dependencies

To enable this parameter, deselect Use same reference threshold for all measurements in the
Configuration tab and select Delay in the Selection tab.
Programmatic Use

• Use get_param(gcb,'DelayRefThreshold') to view the current value of Reference
threshold (V).

• Use set_param(gcb,'DelayRefThreshold',value) to set Reference threshold (V) to a
specific value.

Test threshold (V) — Threshold voltage level in test signal used to measure delay
0 (default) | scalar

Threshold voltage level in test signal against which the delay of the reference signal is being
measured, specified as a scalar in volts.
Dependencies

To enable this parameter, deselect Use same reference threshold for all measurements in the
Configuration tab and select Delay in the Selection tab.

3 Blocks: Utilities

3-18

Programmatic Use

• Use get_param(gcb,'DelayTstThreshold') to view the current value of Reference
threshold (V).

• Use set_param(gcb,'DelayTstThreshold',value) to set Reference threshold (V) to a
specific value.

Version History
Introduced in R2020b

See Also
timeDomainSignal2RiseTime | timeDomainSignal2FallTime |
timeDomainSignal2DutyCycle

 Timing Measurement

3-19

Clock Jitter Measurement
Measure jitter in periodic signals

Libraries:
Mixed-Signal Blockset / Utilities

Description
Use the Clock Jitter Measurement block to measure the RMS (root mean squared) periodic jitter in
clock signals. You can also measure cycle-to-cycle (C2C) jitter and duty cycle distortion (DCD).

Ports
Input

clock — Input clock signal
scalar

Input clock signal, specified as a scalar. The input signal must have only one threshold crossing per
period.
Data Types: double

Output

Period Jitter — Running RMS value of period jitter
scalar

Running RMS value of the period jitter calculated up to the current time step, returned as a scalar.
Period jitter is the deviation in the cycle time of a clock signal with respect to the ideal period.
Data Types: double

C2C — Running RMS value of cycle-to-cycle jitter
scalar

Running RMS value of the cycle-to-cycle jitter calculated up to the current time step, returned as a
scalar. Cycle-to-cycle jitter is the difference in the period between the two consecutive cycles of the
clock.
Dependencies

To enable this port, select Cycle-2-Cycle (C2C) Jitter.
Data Types: double

DCD — Difference between real duty cycle and 50% value
scalar

Difference between the real duty cycle in percentage and the ideal 50% value, returned as a scalar.

3 Blocks: Utilities

3-20

Dependencies

To enable this port, select Duty Cycle Distortion (DCD).
Data Types: double

Parameters
Clock Frequency — Frequency of input clock signal
1e6 (default) | positive real scalar

Frequency of the input clock signal, specified as a positive real scalar in Hz. Clock Frequency is
used to calculate the ideal value of the period of the input signal.

Programmatic Use
Block parameter: Frequency
Type: character vector
Values: positive real scalar
Default: 1e6

Threshold — Threshold signal level
0 (default) | real scalar

Threshold signal level to calculate the rising and falling edge of the signal, specified as a real scalar.

Programmatic Use
Block parameter: Threshold
Type: character vector
Values: real scalar
Default: 0

Period Jitter — RMS period jitter
on (default) | off

Select to calculate the RMS period jitter. This option is selected by default.

Period jitter is the deviation in the cycle time of a clock signal with respect to the ideal period.

Cycle-2-Cycle (C2C) Jitter — RMS cycle-to-cycle jitter
off (default) | on

Select to calculate the RMS cycle-to-cycle (C2C) jitter. This option is deselected by default.

Cycle-to-cycle jitter is the difference in the period between the two consecutive cycles of the clock.

Duty Cycle Distortion (DCD) — Duty cycle distortion for each cycle
off (default) | on

Select to calculate the duty cycle distortion for each cycle. This option is deselected by default.

Duty cycle distortion is the difference between the real duty cycle in percentage and the ideal 50%
value.

Simulate using — Select simulation mode
Code generation (default) | Interpreted execution

 Clock Jitter Measurement

3-21

Select the simulation mode. This choice affects the simulation performance.

Simulating the model using the Code generation method requires additional startup time, but the
subsequent simulations run faster. Simulating the model using the Interpreted execution
method may reduce the startup time, but the subsequent simulations run slower. For more
information, see “Simulation Modes”.

Version History
Introduced in R2021a

See Also
Aperture Jitter Measurement

3 Blocks: Utilities

3-22

Variable Pulse Delay
Delay samples by controlled, continuously variable amount

Libraries:
Mixed-Signal Blockset / Utilities

Description
Variable Pulse Delay block introduces a controllable delay in signal samples. Each sample at the in
port is delayed by the value at the delay port at the time the input sample arrived. The delayed
samples at the out port must maintain the same order as at the in port.

At the beginning of the simulation, the out port is set to the value of the Initial Input parameter.

Ports
Input

in — Input sample data
fixed step discrete sample | variable step discrete sample

Input sample data, whose type and width are inherited from the signal source. The input port
supports data bus operation, but does not support framed inputs.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean |
floating point

delay — Introduces delay to input signal
nonnegative scalar

Introduces delay to the input signal, specified as a nonnegative scalar. The value at the delay port at
the time of the arrival of input signal determines the amount of delay introduced.
Data Types: floating point

Output

out — Delayed output sample
fixed step discrete sample | variable step discrete sample

Delayed output sample data, whose type and width are the same as the input signal. The value at the
delay port at the time of the arrival of input signal determines the amount of delay introduced at the
out port. The input and output signals must maintain the same order.
Data Types: int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | Boolean |
floating point

 Variable Pulse Delay

3-23

Parameters
Initial Input — The value at the output port before simulation
0 (default) | scalar

The value at the output port before simulation, specified as a scalar.

At the beginning of the simulation, the value at the out port is equal to the value set by the Initial
Input parameter. If the value at the in port is not equal to the value of the Initial Input parameter,
then the output will transition to the value at the in port after a delay equal to the value at the delay
port.

Programmatic Use

• Use get_param(gcb,'InitialOutput') to view the current value of Initial Input.
• Use set_param(gcb,'InitialOutput',value) to set Initial Input to a specific value.

Buffer Size — Number of samples of the input buffering available during simulation
1 (default) | positive scalar integer

Number of samples of the input buffering available during simulation, specified as a positive scalar
integer.

Programmatic Use

• Use get_param(gcb,'BufferSize') to view the current value of Buffer Size.
• Use set_param(gcb,'BufferSize',value) to set Buffer Size to a specific value.

Version History
Introduced in R2019a

See Also
Logic Decision | Slew Rate

3 Blocks: Utilities

3-24

Lowpass Resampler
Convert signal from one sample time to another

Libraries:
Mixed-Signal Blockset / Utilities

Description
The Lowpass Resampler block converts either a fixed-step discrete or a variable-step discrete sample
time at its input to a different sample time at its output. To calculate the output sample values, the
block uses a lowpass filtering interpolation algorithm. The algorithm minimizes frequency aliasing at
the output with respect to an output rise/fall time.

If the output rise/fall time is inherited from a fixed-step discrete input, the cutoff frequency is the
Nyquist rate of the input. Otherwise, the cutoff frequency is the Nyquist rate associated with a
sample interval obtained by scaling the specified 20%−80% output rise/fall time to a value for 0%
−100% rise/fall time.

Ports
Input

in — Discrete time input signal
scalar

Discrete time input signal, specified as fixed-step or variable-step scalar.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

out — Continuous time output signal
scalar

Continuous time output signal, returned as a fixed-step or variable-step scalar.
Data Types: single | double

Parameters
Inherit output rise/fall time — Inherit output rise/fall time from fixed-step input sample time
on (default) | off

Select to inherit the output rise/fall time from the fixed-step input sample time.

Note In case of variable step input, there is no rise/fall time to inherit.

 Lowpass Resampler

3-25

Output rise/fall time — 20%−80% output rise/fall time
1e-10 (default) | positive real scalar

20%−80% output rise/fall time, specified as a positive real scalar.

Dependencies

To enable this parameter, deselect the Inherit output rise/fall time parameter.

Programmatic Use
Block parameter: OutputRiseFall
Type: character vector
Values: positive real scalar
Default: 1e-10

Number of samples of delay — Number of samples of propagation delay for fixed-step operation
1 (default) | positive real scalar

Number of samples of propagation delay for fixed-step operation, specified as a positive real scalar.

If the Lowpass Resampler block inherits Output rise/fall time in fixed-step mode, the resampler
conversion delay is given by NDelay·τ, where NDelay is the Number of samples of delay parameter
and τ is the inherited input sample interval.

In the variable-step input mode, the resampler conversion delay is given by 0.6τv when NDelay equals
to one, and is (NDelay-0.5)·τv when NDelay is greater than one. τv is 5/3 times the Output rise/fall
time parameter.

There is a tradeoff between the delay of the conversion and the suppression of out-of-band numerical
artifacts, with greater delay producing better fidelity in band and greater suppression out-of-band.

Note If you need anti-aliasing filter rejection, set Number of samples of delay to 5 or higher.

Dependencies

To enable this parameter, deselect the Inherit output rise/fall time parameter.

Programmatic Use
Block parameter: NDelay
Type: character vector
Values: positive real scalar
Default: 1

Output sample time — Type of output sample time
Inherited (default) | Fixed step discrete | Variable step discrete

Type of the output sample time to be used by downstream blocks, specified as either fixed step
discrete or variable step discrete. The output sampling rate must be higher than the input sampling
rate. For more information, see“Variable Step Sampling Scheme” on page 3-29.

Programmatic Use
Block parameter: OutputTsType
Type: character vector
Values: Fixed step discrete | Variable step discrete

3 Blocks: Utilities

3-26

Default: Inherited

Samples out per rise/fall time — Number of output samples in single output rise/fall time
5 (default) | positive real scalar

Number of output samples in a single output rise/fall time, specified as a positive real scalar.

Dependencies

To enable this parameter, select the option Fixed step discrete or Variable step discrete
in the Output sample time parameter.

Programmatic Use
Block parameter: OutputTsRatio
Type: character vector
Values: positive real scalar
Default: 5

Enable large buffer — Enable extra buffer samples
on (default) | off

Select to enable extra buffer samples. This option is enabled by default.

Number of extra buffer samples — Number of extra buffer samples to support sample delays
10 (default) | positive real scalar

Number of extra buffer samples needed to support the number of samples of delay, specified as a
positive real scalar.

Programmatic Use
Block parameter: NBuffer
Type: character vector
Values: positive real scalar
Default: 10

More About
Frequency and Step Response

The Lowpass Resampler block interpolates the incoming discrete signal using an anti-aliasing filter.
The anti-aliasing filter introduces some delay and the suppression of outputs above the specified
signal bandwidth is not perfect. Introducing larger delays produces better fidelity in band and greater
suppression out-of-band at the cost of more delay inserted in the signal path. In all cases, the
interpolation filter is designed to produce negligible group delay distortion in-band.

 Lowpass Resampler

3-27

In the time domain, the interpolation does introduce some ringing in the step response of the anti-
aliasing filter, which could affect some digital switching applications. However, the choice of Number
of samples of delay parameter of 1 and Output rise/fall time parameter greater than zero is
specifically designed to produce a smooth waveform transition with no ringing.

3 Blocks: Utilities

3-28

Variable Step Sampling Scheme

In some cases, it might be necessary for the Lowpass Resampler block to define its own sample time.
This is particularly true if the block receives a unspecified output sample time at its input.

If the Lowpass Resampler block receives a signal that changes its value at the input, the block
generates some output samples to show the transition. The number of samples are defined by the
Samples out per rise/fall time parameter.

Version History
Introduced in R2021a

 Lowpass Resampler

3-29

R2022a: Updated in R2022a

Lowpass Resampler can define its own output sample times.

R2021a: Introduced in R2021a

Use to change the sampling time of a signal.

See Also
Logic Decision | Variable Pulse Delay | lowpassResamplesim(model)

3 Blocks: Utilities

3-30

Binary Vector Conversion
Convert scalar integer to binary logic vector and vice versa

Libraries:
Mixed-Signal Blockset / Utilities

Description
The Binary Vector Conversion block encodes, decodes, and manipulates binary coded vectors. You can
convert a scalar input to a logical (Boolean) vector signal using binary magnitude or two's
complement and vice versa. You can also resize and reverse the bit index arrangement of the binary
logic vectors.

Ports
Input

in — Input signal
scalar | logical vector

Input signal, specified as a scalar or logical vector.

• When encoding, the input signal is a scalar.
• When decoding, the input signal is a logical (Boolean) vector.

Note When converting to a scalar value from a bit stream, any input greater than 1 is considered as
logical '1'. Similarly any input bit is less than 0 is considered logical '0'.

Data Types: single | double | uint8 | uint16 | uint32 | Boolean | fixdt(0,16)

Output

out — Output signal
scalar | logical vector

Output signal, specified as a scalar or logical vector.

• When encoding, the output signal is a logical (Boolean) vector.
• When decoding, the output signal is a scalar.

Data Types: single | double | uint8 | uint16 | uint32 | Boolean | fixdt(0,16)

 Binary Vector Conversion

3-31

Parameters
Convert — Type of conversion operation
Scalar to binary-coded vector (default) | Binary-coded vector to scalar | Resize
binary-coded vector | Reverse binary-coded vector

Type of conversion, specified as one of these:

• Scalar to binary-coded vector — Encode a scalar input signal to logical vector.
• Binary-coded vector to scalar — Decode a logical vector signal to scalar.
• Resize binary-coded vector — Resize a logical vector while preserving the sign using two's

complement method.
• Reverse binary-coded vector — Reverse the bit index arrangement of a logical vector.

Note When converting to a scalar value from a bit stream we will consider any input greater than 1
as a logical '1'. Similarly if the input bit is less than 0 (i.e. any -ve number) then it will be considered
logical '0'.

Programmatic Use
Block parameter: Convert
Type: character vector
Values: Scalar to binary-coded vector| Binary-coded vector to scalar| Resize
binary-coded vector| Reverse binary-coded vector
Default: Scalar to binary-coded vector

Logical vector encoding — Method of encoding logical vector
Unipolar (magnitude) (default) | Bipolar (2's complement)

Method of encoding logical vector, specified as either Unipolar (magnitude) or Bipolar (2's
complement).

Dependencies

To enable this parameter, set Convert to Scalar to binary-coded vector, Binary-coded
vector to scalar, or Resize binary-coded vector.

Programmatic Use
Block parameter: Encoding
Type: character vector
Values: Unipolar (magnitude)| Bipolar (2's complement)
Default: Unipolar (magnitude)

Input vector length — Number of vector elements in input vector
8 (default) | positive real scalar

Number of vector elements in the input vector, specified as a positive real scalar.

By default, the least significant bit (LSB) is the first element of the vector (index 1). But you can also
set the most significant bit (MSB) as the first element of the vector.

3 Blocks: Utilities

3-32

Dependencies

To enable this parameter, set Convert to Binary-coded vector to scalar, Resize binary-
coded vector, or Reverse binary-coded vector.

Programmatic Use
Block parameter: InputLength
Type: character vector
Values: positive real scalar
Default: 8

Output vector length — Number of vector elements in output vector
8 (default) | positive real scalar

Number of vector elements in the output vector, specified as a positive real scalar.

By default, the least significant bit (LSB) is the first element of the vector (index 1). But you can also
set the most significant bit (MSB) as the first element of the vector.

Dependencies

To enable this parameter, set Convert to Scalar to binary-coded vector or Resize binary-
coded vector.

Programmatic Use
Block parameter: OutputLength
Type: character vector
Values: positive real scalar
Default: 8

Output data type — Datatype of output scalar
double (default) | Inherit: Inherit via back propagation | single | uint8 | uint16 |
uint32 | fixdt(0,16)

Datatype of the output scalar. You can choose to inherit the datatype, specify directly, or express as a
datatype object.

Dependencies

To enable this parameter, set Convert to Binary-coded vector to scalar.

Programmatic Use
Block parameter: DataType
Type: character vector
Values: Inherit: Inherit via back propagation| double| single| uint8| uint16|
uint32| fixdt(0,16)
Default: double

Version History
Introduced in R2021a

See Also
Segmented DAC

 Binary Vector Conversion

3-33

Operational Amplifier
Model operational amplifier with two or more poles

Libraries:
Mixed-Signal Blockset / Utilities

Description
Use the Operational Amplifier block to model an operational amplifier with two or more poles. You
can create a double-pole amplifier from the important circuit parameters or a multiple-pole amplifier
from a transfer function. Use the block to characterize the performance of an operational amplifier as
part of a larger circuit system.

Ports
Input

InputPlus — Positive input terminal
scalar

Positive input terminal of the operational amplifier.
Data Types: single | double

InputMinus — Negative input terminal
scalar

Negative input terminal of the operational amplifier.
Data Types: single | double

Output

OutputPlus — Positive output terminal
scalar

Positive output terminal of the operational amplifier.
Data Types: single | double

OutputMinus — Negative output terminal
scalar

Negative output terminal of the operational amplifier.
Data Types: single | double

3 Blocks: Utilities

3-34

Parameters
Operational Amplifier Circuit — Type of operational amplifier circuit
Double Pole Circuit (default) | Multiple Pole Circuit

Type of the operational amplifier circuit.

• Double Pole Circuit — Use circuit parameters such as open-loop gain, unity gain bandwidth,
maximum tail current, and slew rate to define a simple double-pole circuit.

• Multiple Pole Circuit — Use transfer function poles and zeros to define a multiple-pole
circuit.

Programmatic Use
Block parameter: CircuitType
Type: character vector
Values: Double Pole Circuit| Multiple Pole Circuit
Default: Double Pole Circuit

Signal Parameters

Supply rail high (V) — Maximum supply voltage
5 (default) | real scalar

Maximum supply voltage provided to the Operational Amplifier block, specified as a real scalar in
volts.

Programmatic Use
Block parameter: VoltageSupplyPlus
Type: character vector
Values: real scalar
Default: 5

Supply rail low (V) — Minimum supply voltage
-5 (default) | real scalar

Minimum supply voltage provided to the Operational Amplifier block, specified as a real scalar in
volts.

Programmatic Use
Block parameter: VoltageSupplyMinus
Type: character vector
Values: real scalar
Default: -5

Input offset voltage (V) — Offset voltage at input terminals
0 (default) | scalar

Offset voltage at the input terminals of the operational amplifier, specified as a scalar in volts. The
block uses this value to obtain a zero voltage at the output terminals of the operational amplifier.

Programmatic Use
Block parameter: OffsetVoltage
Type: character vector
Values: scalar
Default: 0

 Operational Amplifier

3-35

Output resistance (Ohms) — Resistance at output terminals
10e3 (default) | positive real scalar

Resistance at the output terminals of the operational amplifier, specified as a positive real scalar in
ohms.

Programmatic Use
Block parameter: OutputResistance
Type: character vector
Values: positive real scalar
Default: 10e3

Advanced Parameters

Open loop gain (V/V) — Operational amplifier gain without feedback
3e3 (default) | positive real scalar

The gain of the operational amplifier without any positive or negative feedback, specified as a unitless
positive real scalar.

Dependencies

To enable this parameter, set Operational Amplifier Circuit to Double Pole Circuit.

Programmatic Use
Block parameter: Gain
Type: character vector
Values: positive real scalar
Default: 3e3

Unity gain bandwidth (Hz) — Frequency at which operational amplifier gain equals unity
10e6 (default) | positive real scalar

The frequency at which the open-loop gain of the operational amplifier becomes unity, specified as a
positive real scalar in hertz.

Dependencies

To enable this parameter, set Operational Amplifier Circuit to Double Pole Circuit.

Programmatic Use
Block parameter: FrequencyUnityGain
Type: character vector
Values: positive real scalar
Default: 10e6

Maximum tail current (A) — Maximum current passing through tail MOSFET in operational amplifier
circuit
100e-6 (default) | scalar

Maximum value of the current passing through the tail MOSFET (metal oxide semiconductor field
effect transistor) in the operational amplifier circuit, specified as a scalar in amperes.

Dependencies

To enable this parameter, set Operational Amplifier Circuit to Double Pole Circuit.

3 Blocks: Utilities

3-36

Programmatic Use
Block parameter: InputCurrentMax
Type: character vector
Values: scalar
Default: 100e-6

Slew rate (V/s) — Rate of change of operational amplifier output voltage
10e6 (default) | positive real scalar

The rate of the change of the output voltage of the operational amplifier with respect to time,
specified as a positive real scalar.

Dependencies

To enable this parameter, set Operational Amplifier Circuit to Double Pole Circuit.

Programmatic Use
Block parameter: SlewRate
Type: character vector
Values: positive real scalar
Default: 10e6

Transfer function poles — Poles in transfer function in Laplace domain
[-2.09e+04 -8.62e+07] (default) | column vector

Poles in the transfer function of the operational amplifier in the Laplace domain, specified as a
column vector.

If you set Operational Amplifier Circuit to Double Pole Circuit, the block automatically
calculates the poles for you from the circuit parameters. If you set Operational Amplifier Circuit to
Multiple Pole Circuit, you can specify the poles.

Programmatic Use
Block parameter: Poles
Type: character vector
Values: column vector
Default: [-2.09e+04 -8.62e+07]

Transfer function zeroes — Zeros in transfer function in Laplace domain
[-9.14e+07] (default) | column vector

Zeros in the transfer function of the operational amplifier in the Laplace domain, specified as a
column vector.

If you set Operational Amplifier Circuit to Double Pole Circuit, the block automatically
calculates the zeros for you from the circuit parameters. If you set Operational Amplifier Circuit to
Multiple Pole Circuit, you can specify the zeros.

Programmatic Use
Block parameter: Zeros
Type: character vector
Values: column vector
Default: [-9.14e+07]

 Operational Amplifier

3-37

Sample interval to be used in MATLAB analyses — Sample interval value used in MATLAB
analyses
1e-8 (default) | scalar

Sample interval value the block uses in MATLAB analyses, specified as a scalar in seconds.

Note To inherit the sample interval value from the input, set Sample interval to be used in
MATLAB analyses to -1.

Programmatic Use
Block parameter: SampleInterval
Type: character vector
Values: scalar
Default: 1e-8

Simulate using — Select simulation mode
Interpreted execution (default) | Code generation

Select the simulation mode. This option you choose affects simulation performance.

Simulating the model using the Code generation method requires additional startup time, but the
subsequent simulations run faster. Simulating the model using the Interpreted execution
method may reduce the startup time, but the subsequent simulations run slower. For more
information, see “Simulation Modes”.

Programmatic Use
Block parameter: SimulateUsing
Type: character vector
Values: Code generation| Interpreted execution
Default: Interpreted execution

Version History
Introduced in R2021b

See Also
Linear Circuit Wizard

Topics
“Design Inverting Amplifier”

3 Blocks: Utilities

3-38

Clock Generator
Generate clock signal with one or more phases

Libraries:
Mixed-Signal Blockset / Utilities

Description
The Clock Generator block generates a clock signal with multiple output phases and detailed phase
noise modeling. The signals at two output ports together model the output clock signal for each
phase. These signals are: a saturated clock signal at the clock port and a clock transition time at the
clockTime port.

You can use the block to model any clock recovery loop that uses a voltage controlled oscillator
(VCO). The block consistently provides clock times where the noise floor is below –150 dBC/Hz. You
can also use the block to include phase noise that matches a physical model.

Ports
Input

vctrl — Voltage to control output frequency
scalar | vector

Voltage to control the output frequency, specified as a scalar or vector.
Data Types: double

ReferenceOffset — Reference frequency offset
scalar

Offset for the reference frequency, specified as a scalar. If you select the ReferenceOffsetPort
parameter, the ReferenceOffset port uses a reference offset value from an external block.
Data Types: double

PhaseOffset — Duty cycle phase offset
scalar

Offset for the duty cycle phase offset, specified as a scalar. If you select the PhaseOffsetPort
parameter, the PhaseOffset port uses a phase offset value from an external block.
Data Types: double

Output

clock0 — Saturated output clock signal
scalar

 Clock Generator

3-39

Saturated output clock signal, returned as a scalar. There is one clock output port for each output
phase.

clock0 is the default name of the port. The nonnegative scalar that follows the port name clock
indicates the clock phase. For example, clock1 represents the saturated output clock signal for phase
1.

The output is a square wave whose amplitude is defined by the Output amplitude parameter.
Data Types: double

clockTime0 — Simulation time at last clock transition
scalar

Simulation time at the last clock transition, returned as a scalar. There is one clockTime output port
for each output phase.

clockTime0 is the default name of the port. The nonnegative scalar that follows the port name
clockTime indicates the clock phase. For example, clockTime1 represents the clock transition time
for phase 1.
Data Types: double

Phase — Most recent clock phase of fundamental clock
scalar

Most recent clock phase of the fundamental clock, returned as a scalar.
Data Types: double

clockValid — Variable-step discrete-sampled clock
scalar

Variable-step discrete-sampled clock, specified as a scalar. The edge sample times of the signal at the
clockValid port exactly match the values in the clock time signal.
Data Types: double

clockTime — Absolute clock time of most recent clock change
scalar

Absolute clock time of the most recent clock change at the clockValid port.
Data Types: double

Parameters
Main

Specify using — Define control sensitivity of clock generator
Voltage sensitivity (default) | Output frequency vs. control voltage | Period
offset

Define control sensitivity of theclock generator.

• Select Voltage sensitivity to specify output frequency from the Voltage sensitivity (Hz/V)
and Free running frequency (Hz) parameters.

3 Blocks: Utilities

3-40

• Select Output frequency vs. control voltage to interpolate output frequency from the
Control voltage (V) vector versus the Output frequency (Hz) vector.

• Select Period offset to adjust the cycle time by the fraction of a nominal clock period. Use the
Control voltage (V) parameter to specify the fraction. The block determines the values of the
Voltage sensitivity (Hz/V) and Free running frequency (Hz) parameters using the value set in
the Symbol time (s) parameter.

Programmatic Use
Block parameter: SpecifyUsing
Type: character vector
Values: Voltage sensitivity | Output frequency vs. control voltage | Period offset
Default: Voltage sensitivity

Voltage sensitivity (Hz/V) — Measure of change in output frequency
100e6 (default) | positive real scalar

Measure of change in output frequency for input voltage change, specified as a positive real scalar
with units in Hz/V.

Programmatic Use
Block parameter: Kvco
Type: character vector
Values: positive real scalar
Default: 100e6
Data Types: double

Free running frequency (Hz) — Output frequency without control voltage
10e9 (default) | positive real scalar

Frequency of the clock generator without any control voltage input (0 V) or the quiescent frequency,
specified as a positive real scalar in hertz.

Programmatic Use
Block parameter: Fo
Type: character vector
Values: positive real scalar
Default: 10e9
Data Types: double

Control voltage (V) — Control voltage values
[-5 0 5] (default) | real valued vector

Control voltage values of the clock generator, specified as a real valued vector in volts.

Programmatic Use
Block parameter: ControlVoltage
Type: character vector
Values: real valued vector
Default: [-5 0 5]
Data Types: double

Output frequency (Hz) — Clock generator output frequency values
[9.9e9 10e9 10.5e9] (default) | positive real valued vector

 Clock Generator

3-41

Output frequency of the clock generator corresponding to the Control voltage (V) vector, specified
in hertz.

Programmatic Use
Block parameter: OutputFrequency
Type: character vector
Values: positive real valued vector
Default: [9.9e9 10e9 10.5e9]
Data Types: double

Output amplitude (V) — Maximum amplitude of clock generator output voltage
1 (default) | positive real scalar

Maximum amplitude of the clock generator output voltage, specified as a positive real scalar.

Programmatic Use
Block parameter: Amplitude
Type: character vector
Values: positive real scalar
Default: 1
Data Types: double

Phase unit — Units of output phase and duty cycle
Degrees (default) | Fraction of a clock cycle

The units of the output phase and duty cycle, specified as Degrees or Fraction of a clock
cycle.

Programmatic Use
Block parameter: PhaseUnits
Type: character vector
Values: Degrees | Fraction of a clock cycle
Default: Degrees

Output phase — Phases of output clock signals
[0] (default) | nonnegative real scalar | nonnegative real valued vector

The phases of the output clock signals, specified as a scalar vector. If specified as a vector, each
element defines one output.

Programmatic Use
Block parameter: OutputPhase
Type: character vector
Values: nonnegative real scalar | nonnegative real valued vector
Default: [0]

Output duty cycle — Duty cycle of the output clock signals
[180] (default) | positive real scalar | positive real valued vector

The duty cycles of the output clock signals, specified as a scalar or a vector. The clock output phase
refers to the rising edge of the output clock.

If specified as a vector, each element defines one output. Missing or empty elements of the vector are
given the default duty cycle. Extra elements are ignored.

3 Blocks: Utilities

3-42

The duty cycle must be greater than Sample interval
Symbol time but less than 1− Sample interval

Symbol time , defined as a
fraction of clock cycle.

Programmatic Use
Block parameter: OutputDutyCycle
Type: character vector
Values: positive real scalar | positive real valued vector
Default: [180]

PhaseOffsetPort — Define duty cycle phase offset through an input port
on (default) | off

Define the duty cycle phase offset through PhaseOffset input port from an external block. If you
deselect the PhaseOffsetPort parameter, it is removed from the AMI files. This effectively hard-
codes phase offset to the value defined by the .Phase offset (symbol time) parameter.

Phase offset (symbol time) — Duty cycle phase offset
0 (default) | scalar in the range [-0.5,0.5]

Duty cycle phase offset, specified as a scalar in the range [-0.5, 0.5] in fraction of symbol time. Phase
offset manually shifts clock probability distribution function (PDF) for better bit error rate (BER)..

Dependencies

To enable this parameter, deselect PhaseOffsetPort.
Programmatic Use
Block parameter: PhaseOffset
Type: character vector
Values: scalar
Default: 0

ReferenceOffsetPort — Define reference frequency offset through an input port
on (default) | off

Define the reference frequency offset through ReferenceOffset input port from an external block. If
you deselect the ReferenceOffsetPort parameter, it is removed from the AMI files. This effectively
hard-codes Reference offset to the value defined by the .Reference clock frequency offset (ppm)
parameter.

Reference clock frequency offset (ppm) — Factor by which nominal output frequency is to be
offset
0 (default) | scalar in the range of [-300,300]

The factor by which the nominal output frequency is to be offset from 1
Symbol time, specified as a

scalar in the range of [-300,300] in unit of parts per million. It is the deviation between the
transmitter oscillator frequency and the receiver oscillator frequency

Dependencies

To enable this parameter, deselect ReferenceOffsetPort.
Programmatic Use
Block parameter: ReferenceOffset

 Clock Generator

3-43

Type: character vector
Values: scalar in the range of [-300,300]
Default: 0

Simulate using — Select simulation mode
Code generation (default) | Interpreted execution

Select the simulation mode. This choice affects the simulation performance.

Simulating the model using the Code generation method requires additional startup time, but the
subsequent simulations run faster. Simulating the model using the Interpreted execution
method may reduce the startup time, but the subsequent simulations run slower. For more
information, see “Simulation Modes”.

Programmatic Use
Block parameter: SimulateUsing
Type: character vector
Values: Code generation| Interpreted execution
Default: Code generation

Phase Noise

Add phase noise — Add phase noise as a function of frequency
on (default) | off

Select to introduce phase noise as a function of frequency. By default, this option is selected.

Phase noise frequency offset (Hz) — Frequency offsets of specified phase noise from carrier
frequency
[30e3 100e3 1e6 3e6 10e6] (default) | positive real valued vector

The frequency offsets of the specified phase noise from the carrier frequency, specified as a positive
real valued vector in hertz.

Dependencies

To enable this parameter, select Add phase noise in the Impairments tab.

Programmatic Use
Block parameter: Foffset
Type: character vector
Values: positive real valued vector
Default: [30e3 100e3 1e6 3e6 10e6]
Data Types: double

Phase noise level (dBc/Hz) — Specified phase noise power at phase noise frequency offsets relative
to the carrier
[-56 -106 -132 -143 -152] (default) | negative real valued vector

The specified phase noise power in a 1 Hz bandwidth centered at the phase noise frequency offsets
relative to the carrier, specified as a negative real valued vector in dBc/Hz. The elements of Phase
noise level correspond to relative elements in the Phase noise frequency offset (Hz) parameter.

Dependencies

To enable this parameter, select Add phase noise in the Impairments tab.

3 Blocks: Utilities

3-44

Programmatic Use
Block parameter: PhaseNoise
Type: character vector
Values: negative real valued vector
Default: [-56 -106 -132 -143 -152]
Data Types: double

Estimate phase noise parameters — Estimate phase noise parameters from measured phase noise
data
button

Click to estimate the phase noise parameters from the phase noise measured phase noise data. This
calculates the Period jitter (S) and Flicker corner frequency (Hz) parameters from the Phase
noise frequency offset (Hz) and Phase noise level (dBc/Hz) parameters. As a result, the phase
noise profile matches a physical model.

Period jitter (S) — Standard deviation of period jitter
1.7e-15 (default) | positive real scalar

Standard deviation of the period jitter, specified as a positive real scalar in seconds. Period jitter is
the deviation in cycle time of a clock signal with respect to the ideal period.

Programmatic Use
Block parameter: PeriodJitter
Type: character vector
Values: positive real scalar
Default: 1.7e-15

Flicker corner frequency (Hz) — Corner frequency of flicker noise
0 (default) | scalar

Corner frequency of the flicker noise, specified as a scalar in hertz. Flicker corner frequency (Hz)
is defined as the frequency at which the phase noise transitions from 1/f2 to 1/f3 due to flicker noise.
At this frequency, the spectral densities of period jitter and flicker noise are equal.

Programmatic Use
Block parameter: CornerFrequency
Type: character vector
Values: scalar
Default: 0

Customize flicker exponent (Advanced feature) — Customize flicker noise power spectral
distribution
off (default) | on

Select this parameter to customize the power spectral distribution of the flicker noise. Traditionally,
flicker noise is defined as the 1/f noise, but it can vary as 1/fV, where 0.8<V<1.5.

Flicker exponent — Flicker noise power exponent
1.0 (default) | 0.8 | 0.9 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5

Flicker noise power exponent, specified between 0.8 to 1.5.

 Clock Generator

3-45

Programmatic Use
Block parameter: FlickerExponent
Type: character vector
Values: 1.0 | 0.8 | 0.9 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5
Default: 1.0

Plot fit — Plot fitted phase noise profile
button

Click to plot the fitted phase noise profile. This allows you how the fitted model matches the specified
phase noise data.

Advanced

Symbol time (s) — Time of single symbol duration
100e-12 (default) | real positive scalar

Time of a single symbol duration, specified as a real positive scalar in seconds.

Programmatic Use
Block parameter: SymbolTime
Type: character vector
Values: real positive scalar
Default: 100e-12
Data Types: double

Sample interval (s) — Uniform time step of waveform
6.25e-12 (default) | real positive scalar

Uniform time step of the waveform, specified as a real positive scalar in seconds.

Programmatic Use
Block parameter: SampleInterval
Type: character vector
Values: real positive scalar
Default: 6.25e-12
Data Types: double

Modulation (2:NRZ, 3:PAM3, 4:PAM4) — Modulation scheme
2 (default) | 3 | 4

Number of logic levels in the modulation scheme:

• Select 2 if the modulation scheme is NRZ(non-return to zero).
• Select 3 if the modulation scheme PAM3 (pulse amplitude modulation level 3).
• Select 4 if the modulation scheme PAM4 (pulse amplitude modulation level 4).

Programmatic Use
Block parameter: Modulation
Type: character vector
Values: 2.| 3 | 4
Default: 2
Data Types: char

3 Blocks: Utilities

3-46

Input waveform type — Type of input waveform
Sample (default) | Impulse

Type of input waveform, either a sample by sample signal or an impulse response signal.

Programmatic Use
Block parameter: WaveType
Type: character vector
Values: Sample.| Impulse
Default: Sample

More About
Clock and Data Recovery

To optimize clock and data recovery operation, specify the control sensitivity of the Clock Generator
block using the Period offset option in the “Specify using” on page 3-0 parameter. This maps
the period offset input from the vctrl port to the center frequency and control sensitivity
configuration. The voltage sensitivity is calculated for the currently configured symbol rate.

IBIS AMI Parameters

The reference offset and phase offset parameters are supported as IBIS-AMI parameters. You can
define how they are included in the AMI files by using the “PhaseOffsetPort” on page 3-0 and
“ReferenceOffsetPort” on page 3-0 .

Version History
Introduced in R2022a

See Also
Signal Sampler | Ring Oscillator VCO | CDR

Topics
“Clock and Data Recovery in SerDes System” (SerDes Toolbox)
“Model Clock Recovery Loops in SerDes Toolbox” (SerDes Toolbox)

 Clock Generator

3-47

Signal Sampler
Sample incoming signal at the edge of incoming clock

Libraries:
Mixed-Signal Blockset / Utilities

Description
The Signal Sampler block estimates the value of an incoming fixed step discrete sampled signal at a
specific time that is typically between two sample times. The block obtains this estimate using an
accurate input value for the time and linear interpolation for the signal.

The Signal Sampler block calculates the time interval from the last sample to the exact time at which
the clock transition occurred as the modular residue with respect to the sample interval. The block
uses linear interpolation to calculate the new output sample value.

Ports
Input

signal — Fixed step discrete input signal
scalar

Fixed step discrete input signal to be sampled, specified as a scalar.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

clock — Saturated but sampled clock waveform
scalar

Saturated but sampled clock waveform, specified as a scalar. The input at the clock port, along with
the input at the clock_time port, is used to define the time at which to sample the input signal.
Data Types: double

clock_time — Exact time of clock transition
scalar

Exact time of the clock transition, specified as a scalar. The input at the clock_time port, along with
the input at the clock port, is used to define the time at which to sample the input signal.

DecisionThreshold — Voltage at which latched output switches polarity
scalar

The voltage at which latched output switches polarity, specified as a scalar.
Data Types: double

3 Blocks: Utilities

3-48

Output

sample — Sample output value at clock edge
scalar | -1 | -1

Sample output value at the clock edge, returned as a scalar.

The output has two modes:

• Continuous — the output is exactly the value of the input signal at the time of the clock edge.
• Latched — the output is binary, with values -1 or 1.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Parameters
Main

Clock edge — Determine when input signal is sampled
Rising (default) | Falling

Determine when the input signal is sampled, either the rising or falling edge of the clock signal.

Programmatic Use
Block parameter: ClockEdge
Type: character vector
Values: Rising| Falling
Default: Rising

Output mode — Determine output sample mode
Continuous (default) | Latched

Determine the output sample mode, either Continuous or Latched.

In Continuous mode, the output is exactly the value of the input signal at the time of the clock edge.

In Latched mode, the output is binary, with values -1 or 1.

Programmatic Use
Block parameter: OutputMode
Type: character vector
Values: Continuous| Latched
Default: Continuous

Simulate using — Select simulation mode
Code generation (default) | Interpreted execution

Select the simulation mode. This choice affects the simulation performance.

Simulating the model using the Code generation method requires additional startup time, but the
subsequent simulations run faster. Simulating the model using the Interpreted execution
method may reduce the startup time, but the subsequent simulations run slower. For more
information, see “Simulation Modes”.

 Signal Sampler

3-49

Programmatic Use
Block parameter: SimulateUsing
Type: character vector
Values: Code generation| Interpreted execution
Default: Code generation

Latched Output

DecisionThresholdPort — Turn on decision threshold port
on (default) | off

Select to turn on the decision threshold port. When turned on, the voltage at the DecisionThreshold
port is used to decide when to switch polarity for latched output. By default, this option is selected.

Decision threshold is supported as an AMI parameter.

Programmatic Use
Block parameter: DecisionThresholdPort
Type: character vector
Values: on| off
Default: on

Latch decision threshold — Voltage at which latched output switches polarity
0 (default) | scalar

The voltage at which latched output switches polarity, specified as a scalar. Use this parameter to
define the decision threshold for latched output in the block itself.

Decision threshold is supported as an AMI parameter.

Dependencies

To enable this parameter, deselect the DecisionThresholdPort parameter.

Programmatic Use
Block parameter: DecisionThreshold
Type: character vector
Values: scalar
Default: 0

Latch sensitivity — Voltage above or below decision threshold needed to assure that latched output
switches to correct polarity
0 (default) | scalar

The voltage above or below the decision threshold needed to assure that the latched output switches
to the correct polarity. This parameter is used to model the metastable region of the latch. The
behavior is modeled as the worst case, in which the latched output remains unchanged unless the
sampled voltage is outside the metastable region. If the data sample voltage lies within the region
(±Latch sensitivity), there is a 50% probability of bit error.

Latch sensitivity is supported as an AMI parameter.

Programmatic Use
Block parameter: Sensitivity
Type: character vector
Values: scalar

3 Blocks: Utilities

3-50

Default: 0

Advanced

Symbol time (s) — Time of single symbol duration
100e-12 (default) | real positive scalar

Time of a single symbol duration, specified as a real positive scalar in seconds.

Programmatic Use
Block parameter: SymbolTime
Type: character vector
Values: real positive scalar
Default: 100e-12
Data Types: double

Sample interval (s) — Uniform time step of waveform
6.25e-12 (default) | real positive scalar

Uniform time step of the waveform, specified as a real positive scalar in seconds.

Programmatic Use
Block parameter: SampleInterval
Type: character vector
Values: real positive scalar
Default: 6.25e-12
Data Types: double

Modulation (2:NRZ, 3:PAM3, 4:PAM4) — Modulation scheme
2 (default) | 3 | 4

Number of logic levels in the modulation scheme:

• Select 2 if the modulation scheme is NRZ(non-return to zero).
• Select 3 if the modulation scheme PAM3 (pulse amplitude modulation level 3).
• Select 4 if the modulation scheme PAM4 (pulse amplitude modulation level 4).

Programmatic Use
Block parameter: Modulation
Type: character vector
Values: 2.| 3 | 4
Default: 2
Data Types: char

Input waveform type — Type of input waveform
Sample (default) | Impulse

Type of input waveform, either a sample by sample signal or an impulse response signal.

Programmatic Use
Block parameter: WaveType
Type: character vector
Values: Sample.| Impulse

 Signal Sampler

3-51

Default: Sample

Version History
Introduced in R2022a

See Also
Clock Generator | CDR

Topics
“Clock and Data Recovery in SerDes System” (SerDes Toolbox)
“Model Clock Recovery Loops in SerDes Toolbox” (SerDes Toolbox)

3 Blocks: Utilities

3-52

Eye Diagram
Display eye diagram of time-domain signal

Libraries:
Communications Toolbox / Comm Sinks
Communications Toolbox HDL Support / Comm Sinks
Mixed-Signal Blockset / Utilities
SerDes Toolbox / Utilities

Description
The Eye Diagram block displays multiple traces of a modulated signal to produce an eye diagram. You
can use the block to reveal the modulation characteristics of the signal, such as the effects of pulse
shaping or channel distortions. .

The Eye Diagram block has one input port. This block accepts a column vector or scalar input signal.
The block accepts a signal with the following data types: double, single, base integer, and fixed point.
All data types are cast as double before the block displays results.

To modify the eye diagram display, select View > Configuration Properties or click the

Configuration Properties button (). Then select the Main, 2D color histogram, Axes, or
Export tabs and modify the settings.

 Eye Diagram

3-53

Ports
Input

In — Input signal
scalar | column vector

Input signal, specified as a scalar or column vector.
Data Types: double

Parameters
Main Tab

Display mode — Display mode

Line plot (default) | 2D color Histogram

Display mode of the eye diagram, specified as Line plot or 2D color histogram. Selecting 2D
color histogram makes the histogram tab available.

Tunable: Yes

Enable measurements — Enable measurements

off (default) | on

Select this check box to enable eye measurements of the input signal.

Show horizontal (jitter) histogram — Display jitter histogram

off (default) | on

Select this radio button to display the jitter histogram. This can also be accessed by using the
histogram button drop down on the toolbar.
Dependencies

This parameter is available when Display mode is 2D color histogram and Enable
measurements is selected.

Show vertical (noise) histogram — Display noise histogram

off (default) | on

Select this radio button to display the noise histogram. This can also be accessed by using the
histogram button drop down on the toolbar.
Dependencies

This parameter is available when Display mode is 2D color histogram and Enable
measurements is selected.

Do not show horizontal or vertical histogram — Do not show horizontal or vertical histogram
on (default) | off

3 Blocks: Utilities

3-54

Select this radio button to display neither the histogram noise nor the histogram jitter.

Dependencies

This parameter is available when Display mode is 2D color histogram and Enable
measurements is selected.

Show horizontal bathtub curve — Show horizontal bathtub curve
off (default) | on

Select this check box to display the horizontal bathtub curve. This can also be accessed by using the
bathtub curve button on the toolbar.

Dependencies

This parameter is available when Enable measurements is selected.

Show vertical bathtub curve — Show vertical bathtub curve
off (default) | on

Select this check box to display the vertical bathtub curve. This can also be accessed by using the
bathtub curve button on the toolbar.

Dependencies

This parameter is available when Enable measurements is selected.

Eye diagram to display — Eye diagram to display

Real only (default) | Real and imaginary

Select either Real only or Real and imaginary to display one or both eye diagrams. To make
eye measurements, this parameter must be Real only.

Tunable: Yes

Color fading — Color fading

off (default) | on

Select this check box to fade the points in the display as the interval of time after they are first
plotted increases.

Tunable: Yes

Dependencies

This parameter is available only when the Display mode is Line plot.

Samples per symbol — Samples per symbol

8 (default) | positive integer

Number of samples per symbol, specified as a positive integer. Use with Symbols per trace to
determine the number of samples per trace.

Tunable: Yes

 Eye Diagram

3-55

Sample offset — Sample offset

0 (default) | nonnegative integer

Sample offset, specified as a nonnegative integer smaller than the product of Samples per symbol
and Symbols per trace. The offset provides the number of samples to omit before plotting the first
point.

Tunable: Yes

Symbols per trace — Symbols per trace

2 (default) | positive integer

Number of symbols plotted per trace, specified as a positive integer.

Tunable: Yes

Traces to display — Number of traces to display

40 (default) | positive integer

Number of traces plotted, specified as a positive integer.

Tunable: Yes

Dependencies

This parameter is available only when the Display mode is Line plot

Axes Tab

Title — Title label

None (default)

Label that appears above the eye diagram plot.

Tunable: Yes

Show grid — Toggle scope grid

on (default) | off

Toggle this check box to turn the grid on and off.

Tunable: Yes

Y-limits (Minimum) — Lower limit of y-axis

-1.1 (default) | scalar

Minimum value of the y-axis.

Tunable: Yes

3 Blocks: Utilities

3-56

Y-limits (Maximum) — Upper limit of y-axis

1.1 (default) | scalar

Maximum value of the y-axis.

Tunable: Yes

Real axis label — Real axis label

Real Amplitude (default)

Text that the scope displays along the real axis.

Tunable: Yes

Imaginary axis label — Imaginary axis label

Imaginary Amplitude (default)

Text that the scope displays along the imaginary axis.

Tunable: Yes

2D Histogram Tab

The 2D histogram tab is available when you click the histogram button or when the display mode is
set to 2D color histogram.

Oversampling method — Oversampling method

None (default) | Input interpolation | Histogram interpolation

Oversampling method, specified as None, Input interpolation, or Histogram interpolation.

To plot eye diagrams as quickly as possible, set the Oversampling method to None. The drawback
to not oversampling is that the plots look pixelated when the number of samples per trace is small. To
create smoother, less-pixelated plots using a small number of samples per trace, set the
Oversampling method to Input interpolation or Histogram interpolation. Input
interpolation is the faster of the two interpolation methods and produces good results when the
signal-to-noise ratio (SNR) is high. With a lower SNR, this oversampling method is not recommended
because it introduces a bias to the centers of the histogram ranges. Histogram interpolation is
not as fast as the other techniques, but it provides good results even when the SNR is low.

Tunable: Yes

Color scale — Color scale

Linear (default) | Logarithmic

Color scale of the histogram plot, specified as either Linear or Logarithmic. Set Color scale to
Logarithmic if certain areas of the eye diagram include a disproportionate number of points.

Tunable: Yes

 Eye Diagram

3-57

The toolbar contains a histogram reset button , which resets the internal histogram buffers and
clears the display. This button is not available when the display mode is set to Line plot.

Export Tab

Export measurements, histograms and bathtub curves — Export measurements, histograms and
bathtub curves

Off (default) | off

Select this check box export the eye diagram measurements to the MATLAB workspace.

Tunable: Yes

Variable name — Variable name

EyeData (default)

Specify the name of the variable to which the eye diagram measurements are saved. The data is
saved as a structure having these fields:

• MeasurementSettings
• Measurements
• JitterHistogram
• NoiseHistogram
• HorizontalBathtub
• VerticalBathtub
• BlockName

Tunable: Yes

Style Dialog Box

In the Style dialog box, you can customize the style of the active display. You can change the color of
the figure containing the displays, the background and foreground colors of display axes, and
properties of lines in a display. To open this dialog box, select View > Style.

Figure color — Figure color
black (default)

Specify the background color of the scope figure.

Axes colors — Axes colors
black | gray (default)

Specify the fill and line colors for the axes.

Line — Line style, thickness and color for line plots
continuous | 0.5 | yellow (default)

Specify the line style, line width, and line color for the displayed signal.

3 Blocks: Utilities

3-58

Dependencies

This parameter is available only when the Display mode is Line plot.

Marker — Data point marker
None (default) | ...

Data point marker for the selected signal, specified as one of the choices in this table data point
markers. This parameter is similar to the Marker property for MATLAB Handle Graphics® plot
objects.

Specifier Marker Type
none No marker (default)

Circle
Square
Cross
Point
Plus sign
Asterisk
Diamond
Downward-pointing triangle
Upward-pointing triangle
Left-pointing triangle
Right-pointing triangle
Five-pointed star (pentagram)
Six-pointed star (hexagram)

Dependencies

This parameter is available only when the Display mode is Line plot.

Colormap — Colormap for histograms
Hot (default) | Parula | Jet | HSV | Cool | SpringSummer | Autumn | Winter | Gray | Bone |
Copper | Pink | Lines | Custom

Specify the colormap of the histogram plots as one of these schemes: Parula, Jet, HSV, Hot, Cool,
Spring, Summer, Autumn, Winter, Gray, Bone, Copper, Pink, Lines, or Custom. If you select
Custom, a dialog box pops up from which you can enter code to specify your own colormap.

Dependencies

This parameter is available only when the Display mode is 2D color histogram.

Measurement Settings Pane

To change measurement settings, first select Enable measurements. Then, in the Eye
Measurements pane, click the arrow next to Settings. You can control these measurement settings.

 Eye Diagram

3-59

Eye level boundaries — Time range for calculating eye levels
[40 60] (default) | two-element vector

Time range for calculating eye levels, specified as a two-element vector. These values are expressed
as a percentage of the symbol duration.

Tunable: Yes

Decision boundary — Amplitude level threshold
0 (default) | scalar

Amplitude level threshold in V, specified as a scalar. This parameter separates the different signaling
regions for horizontal (jitter) histograms. This parameter is tunable, but the jitter histograms reset
when the parameter changes.

For non-return-to-zero (NRZ) signals, set Decision boundary to 0. For return-to-zero (RZ) signals,
set Decision boundary to half the maximum amplitude.

Tunable: Yes

Rise/Fall thresholds — Amplitude levels of the rise and fall transitions
[10 90] (default) | two-element vector

Amplitude levels of the rise and fall transitions, specified as a two-element vector. These values are
expressed as a percentage of the eye amplitude. This parameter is tunable, but the crossing
histograms of the rise and fall thresholds reset when the parameter changes.

Tunable: Yes

Hysteresis — Amplitude tolerance of the horizontal crossings
0 (default) | scalar

Amplitude tolerance of the horizontal crossings in V, specified as a scalar. Increase hysteresis to
provide more tolerance to spurious crossings due to noise. This parameter is tunable, but the jitter
and the rise and fall histograms reset when the parameter changes.

Tunable: Yes

BER threshold — BER used for eye measurements
1e-12 (default) | nonnegative scalar from 0 to 0.5

BER used for eye measurements, specified as a nonnegative scalar from 0 to 0.5. The value is used to
make measurements of random jitter, total jitter, horizontal eye openings, and vertical eye openings.

Tunable: Yes

Bathtub BERs — BER values used to calculate openings of bathtub curves
[0.5 0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09 1e-10 1e-11 1e-12]
(default) | vector

BER values used to calculate openings of bathtub curves, specified as a vector whose elements range
from 0 to 0.5. Horizontal and vertical eye openings are calculated for each of the values specified by
this parameter.

Tunable: Yes

3 Blocks: Utilities

3-60

Dependencies

To enable this parameter, select Show horizontal bathtub curve, Show vertical bathtub curve, or
both.

Measurement delay — Duration of initial data discarded from measurements
0 (default) | nonnegative scalar

Duration of initial data discarded from measurements, in seconds, specified as a nonnegative scalar.

Block Characteristics
Data Types Boolean | double | enumerated | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

More About
Using Eye Diagram in Conditionally Executed Subsystems

When an Eye Diagram block is placed in a conditionally executed subsystem, for example in a
triggered or enabled subsystem:

• Input size must be an integer multiple of SamplesPerSymbol * SymbolsPerTrace
• Sample offset must be zero
• The rightmost part of the display is intentionally omitted. This figure compares typical eye

diagram display when placed in a normal system versus one placed in a conditionally executed
subsystem.

 Eye Diagram

3-61

Eye Diagram Plot in Normal System Eye Diagram Plot in Conditionally
Executed Subsystem

In a regular Eye Diagram, the rightmost part
is a line between the last sample of a trace
and the first sample of the next trace.

In conditionally executed subsystems, these
traces may be non-contiguous, thus this
rightmost segment could corrupt the display
and is omitted.

View Eye Diagram

Display the eye diagram of a filtered QPSK signal using the Eye Diagram block.

Build the doc_eye_diagram_scope model as shown in this figure.

Run the model and observe that two symbols are displayed.

3 Blocks: Utilities

3-62

Open the configuration parameters dialog box. Change the Symbols per trace parameter to 4. Run
the simulation and observe that four symbols are displayed.

 Eye Diagram

3-63

Try changing the Raised Cosine Transmit Filter parameters or changing additional Eye Diagram
parameters to see their effects on the eye diagram.

Histogram Plots

Display histogram plots of a noisy GMSK signal.

Build the doc_eye_diagram_gmsk model as shown in this figure.

3 Blocks: Utilities

3-64

Run the model. The eye diagram is configured to show a histogram without interpolation.

 Eye Diagram

3-65

The lack of interpolation results in a plot having piecewise-continuous behavior.

Open the 2D Histogram tab of the Configuration Properties dialog box. Set the Oversampling
method to Input interpolation. Run the model.

The interpolation smooths the eye diagram.

On the AWGN Channel block, change SNR (dB) from 25 to 10. Run the model.

3 Blocks: Utilities

3-66

Observe that vertical striping is present in the eye diagram. This striping is the result of input
interpolation, which has limited accuracy in low-SNR conditions.

Set the Oversampling method to Histogram interpolation. Run the model.

 Eye Diagram

3-67

The eye diagram plot now renders accurately because the histogram interpolation method works for
all SNR values. This method is not as fast as the other techniques and results in increased execution
time.

Version History
Introduced in R2014a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block is excluded from the generated code when code generation is performed on a system
containing this block.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block can be used for simulation visibility in subsystems that generate HDL code, but is not
included in the hardware implementation.

3 Blocks: Utilities

3-68

Functions: Data Converters

4

inldnl
Integral nonlinearity (INL) and differential nonlinearity (DNL) of data converters

Syntax
s = inldnl(analog,digital,range,type)
s = inldnl(___ ,Name,Value)

Description
s = inldnl(analog,digital,range,type) calculates the integral nonlinearity (INL) and
differential nonlinearity (DNL) errors of ADCs and DACs. The function calculates INL and DNL using
the analog and digital input output data and the nominal analog dynamic range of the converter. The
function can calculate INL and DNL either using the endpoint method, or the best fit method, or
using both methods.

The inldnl function only analyzes converters with a finite number of bits. That means ADCs must
have saturation and quantization. The function ignores any digital value pairs that contain NaN
values.

s = inldnl(___ ,Name,Value) calculates the INL and DNL errors of ADCs and DACs using one
or more name-value pair arguments in addition to the input arguments in the previous syntax.
Unspecified arguments take default values.

Note Initial conditions and other anomalous data can cause this function to behave erratically. This
function can analyze nonmonotonic converters, but it cannot handle multiple distinct occurrences of
the same code in one transfer function.

Examples

Calculate INL and DNL of DAC

Load the digital input and the analog output of a DAC from MAT-files.

load 'digital.mat'
load 'analog.mat'

The nominal analog dynamic range of the DAC is [-1,1]. Turn on plotting for the output converter
threshold. Calculate INL and DNL using both best fit and endpoint methods.

inldnl(a,d,[-1 1],'DAC','GenPlotData','on','INLMethod','All','DNLMethod','All')

INLDNL discarded 759 intervals that contained 5062 data points in total.
This made the analog value sets associated with codes [-16, -16, -16, -16, -16, -16, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -13, 8, 9, 10, 11, 12, 13, 14, 15] contiguous.

4 Functions: Data Converters

4-2

ans = struct with fields:
 Type: 'DAC'
 NBits: 5
 LSB: 0.0625
 MissingCodes: [0x1 double]
 Codes: [-16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]
 IdealCodeCenters: [-1 -0.9375 -0.8750 -0.8125 -0.7500 -0.6875 -0.6250 -0.5625 -0.5000 -0.4375 -0.3750 -0.3125 -0.2500 -0.1875 -0.1250 -0.0625 0 0.0625 0.1250 0.1875 0.2500 0.3125 0.3750 0.4375 0.5000 0.5625 0.6250 0.6875 0.7500 0.8125 0.8750 0.9375]
 CodeCenters: [-0.9522 -0.8820 -0.7987 -0.7288 -0.6557 -0.5862 -0.5165 -0.4488 -0.3785 -0.3122 -0.2421 -0.1673 -0.1028 -0.0401 0.0256 0.1009 0.1657 0.2299 0.2963 0.3627 0.4323 0.4956 0.5580 0.6195 0.6536 0.7638 0.8304 0.8970 0.8304 0.8970 ...]
 CodeCenterStD: [0.0246 0.0261 0.0287 0.0280 0.0254 0.0237 0.0207 0.0212 0.0175 0.0177 0.0228 0.0143 0.0106 0.0147 0.0153 0.0228 0.0079 0.0189 0.0107 0.0178 0.0144 0.0109 0.0126 0.0168 0.0116 5.7752e-06 1.1871e-05 9.4212e-06 1.2177e-05 ...]
 EndpointINL: [5.3291e-15 0.0661 0.3424 0.4027 0.5151 0.5695 0.6270 0.6522 0.7200 0.7221 0.7866 0.9252 0.8999 0.8462 0.8394 0.9862 0.9666 0.9355 0.9402 0.9447 1.0017 0.9572 0.8977 0.8240 0.3113 1.0180 1.0258 1.0338 -1.0900 -1.0818 -0.0076 ...]
 BestFitINL: [-0.6218 -0.5555 -0.2791 -0.2186 -0.1061 -0.0516 0.0061 0.0314 0.0994 0.1016 0.1663 0.3050 0.2799 0.2263 0.2196 0.3665 0.3471 0.3161 0.3210 0.3256 0.3827 0.3384 0.2790 0.2055 -0.3071 0.3997 0.4077 0.4159 -1.7078 -1.6994 ...]
 EndpointDNL: [0.0661 0.2763 0.0604 0.1124 0.0544 0.0575 0.0252 0.0678 0.0021 0.0645 0.1386 -0.0253 -0.0537 -0.0068 0.1468 -0.0196 -0.0311 0.0047 0.0045 0.0570 -0.0444 -0.0596 -0.0736 -0.5127 0.7067 0.0079 0.0080 -2.1238 0.0082 1.0742 0.0076 0]
 BestFitDNL: [0.0663 0.2764 0.0605 0.1125 0.0545 0.0577 0.0253 0.0680 0.0022 0.0647 0.1387 -0.0251 -0.0536 -0.0067 0.1470 -0.0195 -0.0310 0.0049 0.0047 0.0571 -0.0443 -0.0594 -0.0735 -0.5126 0.7068 0.0080 0.0081 -2.1236 0.0083 1.0743 0.0077 0]
 BestFitPoly: [0.0661 0.1440]
 OffsetError: 0.7641
 OffsetErrorUnit: 'LSB'
 GainError: 1.7843
 GainErrorUnit: 'LSB'
 TCR: [1x32 struct]

Input Arguments
analog — Analog input to or output from device
vector

 inldnl

4-3

• If the device under test (DUT) is an ADC, analog input to the ADC, specified as a vector.
• If the DUT is a DAC, analog output from the DAC, specified as a vector.

Data Types: double

digital — Digital output from or input to device
integer vector

• If the device under test (DUT) is an ADC, digital output from the ADC, specified as a vector of
integers.

• If the DUT is a DAC, digital input to the DAC, specified as a vector with integer values.

Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

range — Nominal analog dynamic range of device
2-element vector

Nominal analog dynamic range of the ADC or DAC, specified as a 2-element vector.
Data Types: double

type — Type of device
Auto | ADC | DAC

Type of the device under test, specified as Auto, ADC, or DAC. The type determines whether to
analyze the data as an ADC or DAC.

If The type is set to Auto and if the transfer function is discrete, the inldnl function analyzes the
data as a DAC. The transfer function is considered as discrete if the analog data is less than half of
the digital code width for each digital code.

If The type is set to Auto and if the transfer function is continuous, the inldnl function analyzes
the data as an ADC.
Data Types: string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: inldnl(a,d,[-1 1],'DAC', 'INLMethod', 'All', 'DNLMethod','All')
calculates the INL and DNL of a DAC using both endpoint and best fit method.

OffsetErrorUnit — Unit of reported offset error
LSB (default) | %FS | FS | All

Unit of reported offset error, specified as LSB (least significant bit), %FS (percentage full scale), FS
(full scale), or all.

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is

4 Functions: Data Converters

4-4

0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

Data Types: string

GainErrorUnit — Unit of reported gain error
LSB (default) | %FS | FS | All

Unit of reported gain error, specified as LSB (least significant bit), %FS (percentage full scale), FS
(full scale), or all.

Note The full scale range of the converter is defined as the difference between the last and first code
on the +0.5 LSB compensated transfer curve. In a +0.5 LSB compensated transfer curve, first code is
0.5 LSB wide while the last code is 1.5 LSB wide. The input values must be considered within the full
scale range of the converter.

Note LSB is calculated by the equation LSB = Full scale range of converter
2Nbits .

Data Types: string

GenPlotData — Send output data vectors to output data structure
off (default) | on

Send the output data vectors of the inldnl function to the output data structure s, specified as off
or on. If GenPlotData is set to on, the output data structure contains the output data vectors. The
output data vectors can then be picked up by the DAC DC measurement, DAC Testbench, ADC DC
Measurement, or ADC Testbench blocks to plot the DC analysis results.
Data Types: string

INLMethod — Method to calculate INL
Endpoint (default) | BestFit | All

Method to calculate INL, specified as Endpoint, BestFit, or All.

• If INLMethod is set to Enpoint, the inldnl function compares each threshold's position to the
threshold position of an ideal converter, as determined by a line from the first code transition to
the last code transition.

• If INLMethod is set to BestFit, the inldnl function first takes the best linear fit of the ADC or
DAC transfer curve. Then the function proceeds to calculate the INL using the same steps as the
Enpoint method.

Data Types: string

DNLMethod — Method to calculate DNL
Endpoint (default) | BestFit | All

 inldnl

4-5

Method to calculate DNL, specified as Endpoint, BestFit, or All.

• If DNLMethod is set to Enpoint, the inldnl function compares each threshold's position to the
threshold position of an ideal converter, as determined by a line from the first code transition to
the last code transition to find the INL. The DNL is calculated from the difference between the
elements of the INL vector.

• If DNLMethod is set to BestFit, the inldnl function first takes the best linear fit of the ADC or
DAC transfer curve. Then the function proceeds to calculate the DNL using the same steps as the
Enpoint method.

Data Types: string

AbsoluteError — Return absolute error and full scale DNL for testing
off (default) | on

Return absolute error and full scale DNL for testing, specified as on or off. Absolute error is the
total uncompensated error including offset error, gain error, and nonlinearities. In simulation, to
specifically test that the measurements match the impairments, absolute error can be used instead of
INL. This is because absolute error describes the entire transfer curve in a single vector.
Data Types: string

Output Arguments
s — Output device information
structure

Output information of the inldnl function, returned as a structure. The output contains information
about the device under test in these fields:

Name Values Description Data Types
Type ADC or DAC Type of the device

under test (DUT)
string

Nbits positive real integer Resolution of the ADC
or DAC DUT

double

LSB positive real scalar Least significant bit
value of the DUT. LSB is
the smallest level the
ADC can convert or the
smallest increment of
the DAC output.

double

MissingCodes vector Missing codes in DUT. double
Codes column vector Digital code double
IdealCodeCenters column vector Ideal code center of the

digital code
double

CodeCenters column vector Calculated code center
of the digital code

double

4 Functions: Data Converters

4-6

Name Values Description Data Types
CodeCenterStD column vector Standard deviation of

the code center from
the ideal value

double

EndpointINL column vector INL using Endpoint
method

double

BestFitINL column vector INL using BestFit
method

double

EndPointDNL column vector DNL using Endpoint
method

double

BestFitDNL column vector DNL using BestFit
method

double

BestFitPoly vector Polynomial describing
the best fit using
standard curve-fitting
technique.

double

OffsetError real scalar Offset error of DUT double
GainError real scalar Gain error of DUT double
OffsetErrorUnit LSB, %FS, or FS Unit of reported offset

error
string

GainErrorUnit LSB, %FS, or FS Unit of reported gain
error

string

TCR array of structures Transfer curve
representation from the
analog-digital pairs. For
more information, see
“Transfer Curve
Representation” on
page 4-8.

struct

If you do not assign an output variable, the inldnl function also plots the transfer function of the
device under test in the active figure.
Data Types: struct

More About
Offset Error

Offset error represents the offset of the data converter transfer function curve from it ideal value at a
single point. For more information, see “Measuring Offset and Gain Errors in ADC”.

Gain Error

Gain error represents the deviation of the slope of the data converter transfer function curve from its
ideal value. For more information, see “Measuring Offset and Gain Errors in ADC”.

 inldnl

4-7

INL Error

Integral nonlinearity (INL) error, also termed as relative accuracy, is the maximum deviation of the
measured transfer function from a straight line. The straight line can either be a best fit using
standard curve-fitting technique, or be drawn between the endpoints of the actual transfer function
after gain adjustment.

The best fit method gives a better prediction of distortion in AC applications, and a lower value of
linearity error. The endpoint method is mostly used in the measurement applications of data
converters, since the error budget depends on actual deviation from the ideal transfer function.

DNL Error

Differential nonlinearity (DNL) is the deviation from the ideal difference (1 LSB) between analog
input levels that trigger any two successive digital output levels. The DNL error is the maximum
value of DNL found at any transition.

Transfer Curve Representation

The inldnl function uses the analog-digital pairs to create a transfer curve representation (TCR) as
an array of structures. Each structure has two entries: analog and digital. The analog entry is a
(1×m) or (m×1) vector, and the digital entry is a scalar.

The TCR is created by ordering the analog values from least to greatest, then taking each contiguous
analog range belonging to a code value and placing that range of analog values (and the
corresponding digital value) in a structure in the TCR. The next structure in the TCR contains the
next contiguous range of analog values belonging to a single digital code. As a result, there can be
more than one structure in the TCR for any given digital code, and the TCR is ordinal.

The TCR for an example ADC data is shown. The corresponding TCR bin is noted in red.

4 Functions: Data Converters

4-8

The process for constructing TCR is the same for monotonic or nonmonotonic converters. Once a TCR
is created, the function strategically removes the duplicate bins with the smallest number until each
digital code corresponds to only one bin. After reducing the TCR, the inldnl function performs
analysis on the remaining data.

Version History
Introduced in R2020a

See Also
calibrateADC | calibrateDAC | ADC DC Measurement | SAR ADC | Flash ADC

Topics
“Measuring Offset and Gain Errors in ADC”

 inldnl

4-9

calibrateADC
Remove offset and gain errors from ADC output

Syntax
y=calibrateADC(digital,nbits,polarity)
y=calibrateADC(analog,digital,range)
y=calibrateADC(___ ,Name=Value)

Description
y=calibrateADC(digital,nbits,polarity) removes the linearity impairments such as offset
errors and gain errors from the ADC output specified as thedigital argument. You must provide the
resolution (nbits) and the signedness (polarity) of the ADC if digital does not represent the full
capabilities of the ADC.

y=calibrateADC(analog,digital,range) removes the offset and gain errors from the ADC
output based on the analog and digital input arguments. analog and digital must contain
sufficient number of sample pairs to compute the full capabilities of the ADC.

y=calibrateADC(___ ,Name=Value) removes the offset and gain errors from the ADC output
using one or more name-value pair arguments in addition to the input arguments in the previous
syntaxes. Unspecified arguments take default values.

Input Arguments
analog — Analog input values to ADC
vector

Analog input values to the ADC, specified as a vector.
Data Types: double

digital — Digital output values from ADC
integer vector

Digital output values from the ADC, specified as an integer vector.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

range — Nominal analog dynamic range of ADC
2-element vector

Nominal analog dynamic range of the ADC, specified as a 2-element vector.
Data Types: double

nbits — Number of physical output bits
positive integer scalar

Number of bits physical output bits of the ADC, specified as a positive integer scalar. nbits
determines the resolution of the ADC.

4 Functions: Data Converters

4-10

Data Types: double

polarity — Output data polarity
Unipolar | Bipolar

ADC output data polarity, specified as either Unipolar or Bipolar.
Data Types: string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: y=calibrateADC(digital,Round='on') removes the offset and gain errors from the
input digital data and rounds it to the nearest integer.

OffsetError — Offset error metrics to calibrate out
vector

Offset error metrics to calibrate out of the ADC output, specified as a vector.
Data Types: double

OffsetErrorUnit — Unit of offset error
LSB (default) | %FS | FS

Unit of the offset error, specified as LSB (least significant bit), %FS (percentage full scale), or FS (full
scale).
Data Types: string

GainError — Gain error metrics to calibrate out
vector

Gain error metrics to calibrate out of the ADC output, specified as a vector.
Data Types: double

GainErrorUnit — Unit of gain error
LSB (default) | %FS | FS

Unit of the gain error, specified as LSB (least significant bit), %FS (percentage full scale), or FS (full
scale).
Data Types: string

Round — Round output to the next integer
on (default) | off

Determine whether to round the output of the calibrateADC function to the next integer.
Data Types: string

 calibrateADC

4-11

Output Arguments
y — Compensated digital output
vector

Compensated digital output after removing the ADC offset and gain errors. It is similar to the ADC
digital output, only stretched or compressed to account for linearity errors.

Version History
Introduced in R2023a

See Also
inldnl | calibrateDAC

4 Functions: Data Converters

4-12

calibrateDAC
Compensate DAC input for offset and gain errors

Syntax
y=calibrateDAC(digital,nbits,polarity)
y=calibrateDAC(digital,analog,range)
y=calibrateDAC(digital,analog,ref,bias)
y=calibrateDAC(___ ,Name=Value)

Description
y=calibrateDAC(digital,nbits,polarity) removes the linearity impairments such as offset
errors and gain errors from the DAC input specified as thedigital argument. You must provide the
resolution (nbits) and the signedness (polarity) of the ADC if digital does not represent the full
capabilities of the ADC.

y=calibrateDAC(digital,analog,range) removes the offset and gain errors from the DAC
input based on the digital and analog input arguments. analog and digital must contain
sufficient number of sample pairs to compute the full capabilities of the ADC.

y=calibrateDAC(digital,analog,ref,bias) removes the offset and gain errors from the DAC
input based on the digital, analog, ref, and bias arguments.

y=calibrateDAC(___ ,Name=Value) removes the offset and gain errors from the ADC output
using one or more name-value pair arguments in addition to the input arguments in the previous
syntaxes. Unspecified arguments take default values.

Input Arguments
digital — Digital input values to DAC
integer vector

Digital input values to the DAC, specified as an integer vector.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

analog — Analog output values from DAC
vector

Analog output values from the DAC, specified as a vector.
Data Types: double

range — Analog dynamic output range of DAC
2-element vector

Analog dynamic output range of the DAC, specified as a 2-element vector.
Data Types: double

 calibrateDAC

4-13

ref — Constant analog reference
real scalar

Constant analog reference of the DAC, specified as a real valued scalar.
Data Types: double

bias — Intended analog bias
real scalar

Intended analog bias of the DAC, specified as a real valued scalar.
Data Types: double

nbits — Number of physical input bits
positive integer scalar

Number of bits physical input bits of the DAC, specified as a positive integer scalar. nbits
determines the resolution of the DAC.
Data Types: double

polarity — Input data polarity
Unipolar | Bipolar

DAC input data polarity, specified as either Unipolar or Bipolar.
Data Types: string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: y=calibrateDAC(digital,Round='on') removes the offset and gain errors from the
input digital data and rounds it to the nearest integer.

OffsetError — Offset error metrics to calibrate out
vector

Offset error metrics to calibrate out of the DAC input, specified as a vector.
Data Types: double

OffsetErrorUnit — Unit of offset error
LSB (default) | %FS | FS

Unit of the offset error, specified as LSB (least significant bit), %FS (percentage full scale), or FS (full
scale).
Data Types: string

GainError — Gain error metrics to calibrate out
vector

Gain error metrics to calibrate out of the DAC input, specified as a vector.
Data Types: double

4 Functions: Data Converters

4-14

GainErrorUnit — Unit of gain error
LSB (default) | %FS | FS

Unit of the gain error, specified as LSB (least significant bit), %FS (percentage full scale), or FS (full
scale).
Data Types: string

Round — Round output to the next integer
on (default) | off

Determine whether to round the output of the calibrateDAC function to the next integer.
Data Types: string

Output Arguments
y — Compensated output
vector

Compensated output after removing the offset and gain errors from the DAC input digital data . It is
similar to the DAC digital input, only stretched or compressed to account for linearity errors.

Version History
Introduced in R2023a

See Also
inldnl | calibrateADC

 calibrateDAC

4-15

Functions: Phase-Locked Loop

5

phaseNoiseMeasure
Measure and plot phase noise profile of time or frequency-domain signal

Syntax
PNMeasure = phaseNoiseMeasure(Xin,Yin,RBW,FrOffset,PlotOption,tag,Name,Value)
PNMeasure = phaseNoiseMeasure(___ ,PNTarget,Name,Value)
[PNMeasure,GenFrOffset,GenPN] = phaseNoiseMeasure(___)

Description
PNMeasure = phaseNoiseMeasure(Xin,Yin,RBW,FrOffset,PlotOption,tag,Name,Value)
measures the single-sideband phase noise levels of either a time or frequency-domain signal at the
specified frequency offset points. The function also plots phase noise profile at the specified
frequency offset points when you specify the PlotOption argument as 'on'. If you specify the
Name-Value pair argument, enclose each argument name in quotes. Unspecified arguments take
default values.

PNMeasure = phaseNoiseMeasure(___ ,PNTarget,Name,Value) in addition to the input
arguments in the previous syntax compares phase noise levels at the specified frequency offsets to a
target phase noise profile. Set the PlotOption argument to 'on' to plot and compare the measured
phase noise profile to the target profile.

[PNMeasure,GenFrOffset,GenPN] = phaseNoiseMeasure(___) additionally returns the
phase noise waveform data represented by the frequency offset vector and the corresponding phase
noise vector.

Examples

Phase Noise Profile from Frequency and Power Vectors

Load the power spectrum data (frequency and power vectors) of the signal obtained from spectrum
analysis.

load frequency.mat;
load corresponding_power.mat;

Set the resolution bandwidth of the spectrum analysis to 25 kHz. The frequency offset points are 30
kHz, 100 kHz, 1 MHz, 3 MHz, and 10 MHz. The target phase noise profile corresponding to these
frequency offset points is:

• -56 dBc/Hz at 30 kHz
• -106 dBc/Hz at 100 kHz
• -132 dBc/Hz at 1 MHz
• -143 dBc/Hz at 3 MHz
• -152 dBc/Hz at 10 MHz

5 Functions: Phase-Locked Loop

5-2

rbw = 25e3;
FrOffset = [30e3 100e3 1e6 3e6 10e6];
PNTarget = [-56 -106 -132 -143 -152];

Use the phaseNoiseMeasure function to measure and plot the phase noise profile.

PNMeasure = phaseNoiseMeasure(f1,p1,rbw,FrOffset,'on','Phase noise', PNTarget)

PNMeasure = 5×1

 -70.8795
 -106.2594
 -136.6468
 -147.3779
 -157.0967

Phase Noise Profile from Time Domain Signal

Load the time domain signal represented by the time and signal value vectors.

load time_1.mat;
load signal_1.mat;

 phaseNoiseMeasure

5-3

Set the resolution bandwidth of the spectrum analysis to 75 kHz. The frequency offset points are 100
kHz, 300 kHz, 500kHz, 1 MHz, 3 MHz, and 10 MHz. The target phase noise profile corresponding to
these frequency offset points is:

• -130 dBc/Hz at 100 kHz
• -140 dBc/Hz at 300 kHz
• -135 dBc/Hz at 500 kHz
• -130 dBc/Hz at 1 MHz
• -140 dBc/Hz at 3 MHz
• -155 dBc/Hz at 10 MHz

rbw = 75e3;
FrOffset = [100e3 300e3 500e3 1e6 3e6 10e6];
PNTarget = [-130 -140 -135 -130 -140 -155];

Use the phaseNoiseMeasure function to measure and plot the phase noise profile.

[PNMeasure] = phaseNoiseMeasure(t,x,rbw,FrOffset,'on','Phase noise',PNTarget,'Type','Time','Histogram','on')

5 Functions: Phase-Locked Loop

5-4

PNMeasure = 6×1

 -116.0967
 -138.8853
 -135.6704
 -133.4544
 -135.8667
 -104.3244

Input Arguments
Xin — Time or frequency vector
positive real vector

Time or frequency vector, specified as a positive real vector. If you specify a time-domain signal or
'Type' name-value pair as 'Time', Xin is a time vector in seconds. If you specify a frequency-domain
signal or 'Type' name-value pair as 'Frequency', Xin is a frequency vector in hertz.
Data Types: double

Yin — Signal value or power vector
real vector

 phaseNoiseMeasure

5-5

Signal value or power vector, specified as a real vector. If you specify a time-domain signal or 'Type'
name-value pair as 'Time', Yin is a signal value vector in volts. If you specify a frequency-domain
signal or 'Type' name-value pair as 'Frequency', Yin is a power vector in dBm.
Data Types: double

RBW — Resolution bandwidth used in spectrum analysis
positive real scalar

Resolution bandwidth used in the spectrum analysis, specified as a positive real scalar in hertz. RBW
defines the smallest positive frequency at which the frequency components of a signal can be
resolved.
Data Types: double

FrOffset — Frequency offset points to measure phase noise
positive real vector

Frequency offset points at which phase noise levels are calculated, specified as a positive real vector
in hertz.
Data Types: double

PlotOption — Plot phase noise analysis results
'on' | 'off'

Plot the phase noise analysis results in a figure, specified as on or off. Set PlotOption to 'on' to
view the power spectrum and phase noise profile plots. If the Name-Value pair argument 'Type' is
specified as 'Time', you can only plot the phase noise profile of the time-domain signal.
Data Types: char

tag — Figure identifier
string scalar | character vector

Figure identifier, specified as a string scalar or a character vector. Tag figures to keep multiple plots
open as you change the simulation parameters.
Data Types: char | string

PNTarget — Target phase noise levels
real vector

Target phase noise levels corresponding to the frequency offset points defined in FrOffset, specified
as real vector in dBc/Hz. To compare PNTarget with PNMeasure, set PlotOption argument to on to
view the phase noise comparison plot.
Data Types: double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

5 Functions: Phase-Locked Loop

5-6

Example: PNMeasure = phaseNoiseMeasure(f1,p1,rbw,FrOffset,'on','Phase noise',
PNTarget,'Type','Frequency','Histogram','on')

Type — Type of input signal
'Frequency' (default) | 'Time'

Type of the input signal, specified as the comma-separated consisting of 'Type' and one of the
following:

• 'Frequency' if the input signal is power spectrum data.
• 'Time' if the input signal is time domain data.

Histogram — Plot histogram of half-period information for time-domain signal
'off' (default) | 'on'

Plot the histogram of the half-period information for the time-domain signal, specified as the comma-
separated pair consisting of 'Histogram' and 'off' or 'on'. You can plot the histogram only when
'Type' is specified as 'Time'.

Output Arguments
PNMeasure — Measured phase noise levels
real vector

Measured single-sideband phase noise levels corresponding to frequency offset points defined in
FrOffset, returned as a real vector in dBc/Hz. You can compare PNMeasure with the target phase
noise levels with PNTarget defined in the function.
Data Types: double

GenFrOffset — Frequency offset points used to plot phase noise profile
vector

Frequency offset points generated by the phaseNoiseMeasure function that are used to plot the
phase noise profile, returned as a vector.
Data Types: double

GenPN — Phase noise values used to plot phase noise profile
vector

Phase noise values generated by the phaseNoiseMeasure function that are used to plot the phase
noise profile, returned as a vector. Each element in GenPN represents the phase noise at the
corresponding frequency offset point represented in GenFrOffset.
Data Types: double

Version History
Introduced in R2020a

 phaseNoiseMeasure

5-7

See Also
Phase Noise Measurement | VCO | Fractional N PLL with Accumulator | Fractional N PLL with Delta
Sigma Modulator | Integer N PLL with Dual Modulus Prescaler | Integer N PLL with Single Modulus
Prescaler | VCO Testbench | PLL Testbench

5 Functions: Phase-Locked Loop

5-8

phaseNoiseToJitter
Measure RMS phase jitter from phase noise data

Syntax
[Jrms_rad,Jrms_deg] = phaseNoiseToJitter(PNFreq,PNPow)
[Jrms_rad,Jrms_deg, Jrms_s] = phaseNoiseToJitter(___ ,'Frequency',frequency)

Description
[Jrms_rad,Jrms_deg] = phaseNoiseToJitter(PNFreq,PNPow) returns the effective RMS
phase jitter in radians and degrees from the phase noise frequency and power levels.

[Jrms_rad,Jrms_deg, Jrms_s] = phaseNoiseToJitter(___ ,'Frequency',frequency)
also returns the effective RMS phase jitter in seconds when you specify the signal frequency in
addition to the input arguments in the previous syntax.

Examples

Measure Effective RMS Phase Jitter from Phase Noise Profile

Use a signal of 100 MHz frequency. The phase noise profile is:

• -125 dBc/Hz at 100 Hz
• -150 dBc/Hz at 1 kHZ
• -174 dBc/Hz at 10 kHz
• -174 dBc/Hz at 200 MHz

Calculate the effective RMS phase jitter in radian, degree and second using the
phaseNoiseToJitter function.

PNFreq = [100,1e3,1e4,200e6];
PNPow = [-125,-150,-174,-174];
[Jrms_rad Jrms_deg Jrms_sec]=phaseNoiseToJitter(PNFreq,PNPow,'Frequency',100e6)

Jrms_rad = 4.0430e-05

Jrms_deg = 0.0023

Jrms_sec = 6.4346e-14

Input Arguments
PNFreq — Frequency points relative to fundamental frequency at which phase noise is
calculated
real-valued vector

 phaseNoiseToJitter

5-9

Frequency points relative to the fundamental frequency to which phase noise is calculated, specified
as a real-valued vector in hertz.
Data Types: double

PNPow — Phase noise power at specified frequency offsets relative to fundamental
frequency
real-valued vector

Phase noise power in 1-Hz bandwidth centered at the specified frequency offsets relative to the
fundamental frequency, specified as a real-valued vector in dBc/Hz. The elements of PNPow
correspond to the elements of PNFreq.
Data Types: double

frequency — Signal frequency
100e6 (default) | scalar

Signal frequency, specified as a scalar in hertz. Signal frequency is used to calculate the RMS phase
jitter in seconds.
Data Types: double

Output Arguments
Jrms_rad — Effective RMS phase jitter in radians
scalar

Effective RMS phase jitter, returned as a scalar in radians.

Jrms_deg — Effective RMS phase jitter in degrees
scalar

Effective RMS phase jitter, returned as a scalar in degrees.

Jrms_s — Effective RMS phase jitter in seconds
scalar

Effective RMS phase jitter, returned as a scalar in seconds. To calculate Jrms_s, define the signal
frequency using Name-Value pair arguments.

Version History
Introduced in R2020b

See Also
phaseNoiseMeasure

5 Functions: Phase-Locked Loop

5-10

timeDomainSignal2DutyCycle
Measure duty cycle of time-domain signal

Syntax
DutyCycle = timeDomainSignal2DutyCycle(Tin,Vin)

Description
DutyCycle = timeDomainSignal2DutyCycle(Tin,Vin) returns the duty cycle of the time-
domain input signal represented by [Tin, Vin].

Examples

Duty Cycle of Time-Domain Signal

Determine the duty cycle of a time-domain signal.

load tin.mat;
load xin.mat;
dutycycle = timeDomainSignal2DutyCycle(t,x)

dutycycle = 4×1

 0.5000
 0.5000
 0.5000
 0.5000

Input Arguments
Tin — Sample time points in signal
vector

Sample time points in the signal of interest, specified as a vector of the same length as Vin.
Data Types: double

Vin — Signal values at sample time points
vector

Signal values at the sample time points defined in Tin, specified as a vector of the same length as
Tin.
Data Types: double

 timeDomainSignal2DutyCycle

5-11

Output Arguments
DutyCycle — Ratio of positive pulse width to pulse period
vector

Ratio of the positive pulse width to pulse period, returned as a vector of the same length as the
number of pulse periods present in the signal. Since pulse width cannot exceed pulse period,
DutyCycle has a range of (0,1).

Version History
Introduced in R2020b

See Also
timeDomainSignal2RiseTime | timeDomainSignal2FallTime | dutycycle

5 Functions: Phase-Locked Loop

5-12

timeDomainSignal2FallTime
Measure fall time of time domain signal

Syntax
Tf = timeDomainSignal2FallTime(Tin,Vin,RefLevel)

Description
Tf = timeDomainSignal2FallTime(Tin,Vin,RefLevel) returns the fall time of the time
domain input signal represented by [Tin, Vin].

Examples

Fall Time of Time Domain Signal

Determine the fall time of a time domain signal.

load tin.mat;
load xin.mat;
plot (t,x)

 timeDomainSignal2FallTime

5-13

RefLevel = [20 80];
Tf = timeDomainSignal2FallTime(t,x,RefLevel)

Tf = 4×1
10-8 ×

 0.2970
 0.2970
 0.2970
 0.2970

Input Arguments
Tin — Sample time points in signal
vector

Sample time points in the signal of interest, specified as a vector of the same length as Vin.
Data Types: double

Vin — Signal values at sample time points
vector

Signal values at the sample time points defined in Tin, specified as a vector of the same length as
Tin.
Data Types: double

RefLevel — Reference levels as percentage of waveform amplitude
2-element positive row vector

Reference levels to calculate fall time as a percentage of waveform amplitude, specified as a 2-
element row vector of positive values. The reference levels must be in increasing order.
Data Types: double

Output Arguments
Tf — Fall time of input signal
vector

Fall time of the input signal, returned as a vector of the same length as the number of falling edges in
the signal.

Version History
Introduced in R2020b

See Also
timeDomainSignal2RiseTime | timeDomainSignal2DutyCycle | falltime

5 Functions: Phase-Locked Loop

5-14

timeDomainSignal2RiseTime
Measure rise time of time domain signal

Syntax
Tr = timeDomainSignal2RiseTime(Tin,Vin,RefLevel)

Description
Tr = timeDomainSignal2RiseTime(Tin,Vin,RefLevel) returns the rise time of the time-
domain input signal represented by [Tin, Vin].

Examples

Rise Time of Time-Domain Signal

Determine the rise time of a time-domain signal.

load tin.mat;
load xin.mat;
plot(t,x)

 timeDomainSignal2RiseTime

5-15

RefLevel = [20 80];
Tr = timeDomainSignal2RiseTime(t,x,RefLevel)

Tr = 5×1
10-8 ×

 0.2970
 0.2970
 0.2970
 0.2970
 0.2970

Input Arguments
Tin — Sample time points in signal
vector

Sample time points in the signal of interest, specified as a vector of the same length as Vin.
Data Types: double

Vin — Signal values at sample time points
vector

Signal values at the sample time points defined in Tin, specified as a vector of the same length as
Tin.
Data Types: double

RefLevel — Reference levels as percentage of waveform amplitude
2-element positive row vector

Reference levels to calculate rise time as a percentage of waveform amplitude, specified as a 2-
element row vector of positive values. The reference levels must be in increasing order.
Data Types: double

Output Arguments
Tr — Rise time of input signal
vector

Rise time of the input signal, returned as a vector of the same length as the number of rising edges in
the signal.

Version History
Introduced in R2020b

See Also
timeDomainSignal2FallTime | timeDomainSignal2DutyCycle | risetime

5 Functions: Phase-Locked Loop

5-16

Functions:Utilities

6

lowpassResample
Convert signal from one sample time to another

Syntax
[vq,vdq] = lowpassResample(t,v,tq,config)

Description
[vq,vdq] = lowpassResample(t,v,tq,config) returns an interpolated vector of samples vq
and their derivatives vdq from input sample times t, input sample values v, and output sample times
tq. The interpolation process is defined by the parameters in config.

Examples

Resample Discrete Sine wave

Sample a sine wave at pi samples per cycle.

t = (0:20)*2;
v = sin(t);

Define the interpolation sample times.

tq = (0:400)*0.1;

Define the interpolation configuration.

config.OutputRiseFall = 2; %Fixed step sample interval
config.NDelay = 5;
config.SampleMode = 'fixed';
config.CausalMode = 'off';

Perform the interpolation.

[vq,vdq]=lowpassResample(t,v,tq,config);

Scatter plot the samples, plot the interpolated data, and plot the original sine wave.

scatter(t,v);
hold on;
plot(tq,vq);
plot(tq,sin(tq));
hold off;
title('Interpolated Data');
legend('samples','interpolated data','original sine wave');

6 Functions:Utilities

6-2

Plot the interpolated derivative and the original derivative.

plot(tq,vdq);
hold on;
plot(tq,cos(tq));
hold off;
title('Interpolated Derivative');
legend('interpolated derivative','original derivative');

 lowpassResample

6-3

Input Arguments
t — Input sample times
vector

Input sample times, specified as a fixed-step or variable-step vector.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

v — Input sample values
vector

Input sample values corresponding to the input sample times defined in t, specified as a vector.
Data Types: single | double

tq — Output sample times
vector

Output sample times, specified as a fixed-step or variable-step vector.
Data Types: single | double

config — Interpolation parameters
structure

Interpolation parameters, specified as a structure with fields.

6 Functions:Utilities

6-4

Field Description Value Default
OutputRiseFall The 0%–100% rise/fall

time of the interpolated
output.

Positive real scalar 1e-10

NDelay Number of rise/fall
times by which the
interpolated output will
be delayed with respect
to the input.

Positive real integer 1

SampleMode Input sampling mode,
either fixed-step
discrete time or
variable-step discrete
time.

fixed, variable variable

CausalMode Determine whether you
want the interpolation
process to introduce
delay. Select
CausalMode to
introduce enough delay
between input and
output samples in the
interpolation process so
that the process is
strictly causal.

off, on off

Data Types: struct

Output Arguments
vq — Interpolated samples
vector

Interpolated samples, returned as a vector.
Data Types: single | double

vdq — Derivative of interpolated samples
vector

Derivative of interpolated samples corresponding to vq, returned as a vector.
Data Types: single | double

More About
Delay in Interpolated Output

You can define the number of rise/fall times by which the interpolated output will be delayed with
respect to the input using the config.NDelay parameter.

 lowpassResample

6-5

The default value of config.NDelay of 1 produces an interpolation that has no ringing due to the
Gibbs phenomenon and also has modest rejected out of band numerical artifacts.

Setting config.NDelay to 5 introduces enough anti-aliasing filtering to satisfy most applications,
but introduces ringing due to the Gibbs phenomenon.

Setting config.NDelay to 10 introduces enough anti-aliasing filtering to satisfy demanding
applications, but at the cost of additional delay and computation.

Setting config.NDelay to greater than 10 is supported, but is not required normally.

Input Sampling Mode

You can define the input sampling mode using the config.SampleModeparameter.

The default value of config.SampleMode of variable assumes that the input values are the result
of a zero order hold process. In this case, the signal value is always equal to the value of the most
recent sample. This choice is appropriate for saturated signals for which the transition times are the
most important consideration.

Setting 'config.SampleMode to fixed assumes that the input values are instantaneous samples of
a mathematically continuous signal at uniformly spaced sample times. Use this option for signals that
are subject to a significant amount of analog filtering.

Causality of Interpolation Process

You can define the interpolation process as causal or not using the config.SampleMode parameter.

The default value of config.CausalMode of off aligns the time scale of the interpolation with the
time scale of the input. This is appropriate when all necessary input values are available in a single
vector.

Setting config.CausalMode to on introduces enough delay so that the sample values are available
before performing an interpolation. The interpolated sample times are therefore always delayed by a
constant value with respect to the input sample times. The required additional delay in this mode is
config.OutputRiseFall times config.NDelay. This behavior mimics the behavior of the
Lowpass Resampler block.

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Logic Decision | Variable Pulse Delay | Lowpass Resampler

6 Functions:Utilities

6-6

adeinfo2msa
Extract simulation data from Cadence to Mixed Signal Analyzer app

Syntax
adeinfo2msa

Description
adeinfo2msa extracts simulation data from Cadence ADE simulation runs to analyze them using the
Mixed Signal Analyzer app.

You can use the name-value pair arguments to specify which simulation runs and tests to import from
the Cadence ADE Assembler/Maestro. If no name-value arguments are defined, the function by
default creates a .mat file where only metrics data from the latest Cadence simulation run is saved.
The function then launches the Mixed Signal Analyzer app and loads the generated .mat file.

Examples

Export Cadence® Simulation Data to MAT File

You can export the Cadence® simulation run results to a .mat file after an interactive run result is
created. The .mat file can then be imported to the Mixed-Signal Analyzer app. To export the data,
launch MATLAB® from Cadence ADE by clicking the M button in the toolbar.

The MATLAB session that opens should have adeInfo in the base workspace.

Run the function adeinfo2msa. Since no name-value arguments are specified, the function creates
a .mat file with only the metrics data from the latest Cadence simulation run. The .mat file is saved in
the present working directory.

 adeinfo2msa

6-7

Once the .mat file is generated, the app automatically launches with the imported .mat file.

You can also specify the simulation run type, run name, and test name. Use the name-value pair
argument import2msa to determine whether to launch the app with the generated .mat file or just to
save the .mat file in the present working directory. Use the name-value pair argument metricsOnly
to import only the simulation metrics data for faster performance.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: adeinfo2msa(runName='Interactive.70',import2msa=false) imports the
simulation data of the Cadence interactive run number 70, but does not launch the Mixed-Signal
Analyzer app.

import2msa — Launch Mixed-Signal Analyzer app after importing simulation data
true (default) | false

Determine whether to launch the Mixed-Signal Analyzer app after importing simulation data from
Cadence. Setting it to true launches the app as well as creating the MAT file and saving it to the
present working directory. Setting it to false only creates the MAT file and saves it to the present
working directory, but does not launch the app.

metricsOnly — Only import metrics from simulation data
true (default) | false

Determine whether to import only the metrics or everything from the Cadence simulation data.
Setting it to false can import redundant signals and waveforms, making the process time
consuming.

testName — Test name mentioned in the Cadence ADE Maestro view
array of strings

6 Functions:Utilities

6-8

The test name as mentioned in Cadence ADE Maestro view. This is the test whose simulation data you
want to import. You can import multiple tests using a cell array of strings.

runName — Cadence simulation run name
array of strings

The Cadence simulation run name. You can find it in the Cadence interactive run results history as
Interactive.<runNumber>. You can import data for multiple runs using a cell array of strings.

runType — Specify type of Cadence
Interactive (default) | Ocean

Specify whether processing Interactive or Ocean simulation run results from Cadence.

fileName — Specify name of MAT file where simulation results is to be stored
array of strings

Specify the name of the MAT file where the extracted Cadence simulation data is to be stored.

More About
Generated Simulation Data

The adeinfo2msa generates a .mat file to save the data from the Cadence simulation run and saves
it in the current working directory. The Cadence simulation run is pointed by an adeInfo object in
the MATLAB base workspace. The .mat file contains the simulation results and metrics data. It also
contains the information about individual waveform data if you select to save the waveform data.

You can select to save both the metrics data and waveforms by setting metricsOnly argument to
false. In this case, the function creates a folder that contains the waveform data. The waveform
data for each node per analysis is saved in its own .mat file in the folder.

Version History
Introduced in R2022b

See Also
Mixed Signal Analyzer | msaSessionUpdate

 adeinfo2msa

6-9

msaSessionUpdate
Update saved session of Mixed Signal Analyzer app

Syntax
msaSessionUpdate(sessionFileName='msa.mat')
msaSessionUpdate(sessionFileName='msa.mat',
updateMatFileName='Interactive.1.mat')

Description
msaSessionUpdate(sessionFileName='msa.mat') updates the saved session msa.mat in the
Mixed Signal Analyzer app using the adeInfo database while working from an active Cadence
Virtuoso® ADE session.

The function also generates a report of the plots that got updated at the end of the update process.

msaSessionUpdate(sessionFileName='msa.mat',
updateMatFileName='Interactive.1.mat') updates the saved session msa.mat in the Mixed
Signal Analyzer app using the simulation file 'Interactive.1.mat'. You can generate the
simulation mat file using the function adeinfo2msa.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
msaSessionUpdate(sessionFileName='clockBuffSession.mat',updateMatFileName='In
teractive.10.mat',msaVisibility=false) updates the session mat file
clockBufferSession.mat using the simulation file Interactive.10.mat and closes the Mixed-
Signal Analyzer app session after creating a ppt report..
Example:
msaSessionUpdate(sessionFileName='clockBuffSession.mat',reportType='pdf')
updates the session mat file clockBufferSession.mat using the sing the adeInfo database while
working from an active Cadence Virtuoso® ADE session and creates a pdf report.

sessionFileName — Mixed Signal Analyzer app session that needs to be updated
string

MAT file name for the Mixed-Signal Analyzer app session with configured waveforms and trend
chart plots that you want to update.
Data Types: string

sessionPath — Directory location of saved session mat file
string

6 Functions:Utilities

6-10

The directory location of the saved Mixed-Signal Analyzer app session mat file.

If you are working from an active Cadence Virtuoso® ADE session, by default the function looks for
the session file in the maestro/documents folder. Otherwise, the function looks for the session file in
the present working directory.
Data Types: string

updateMatFileName — Mat file containing latest simulation data
string

The mat file containing the latest Cadence simulation data. The function uses the contents of this file
to update all the plots in the Mixed-Signal Analyzer app session.

If you are not working from an active Cadence Virtuoso® ADE session, you need to provide this
information.
Data Types: string

updateMatPath — Directory location of updated simulation mat file
string

The directory location of the updated simulation mat file. By default, the function looks for the
updated simulation mat file in the current working directory.
Data Types: string

reportType — Type of report file created
ppt (default) | pdf | doc | html

The type of report file the function creates at the end of the update operation.
Data Types: string

reportFileName — Name of report file
string

The name of the report file where the function saves the report.
Data Types: string

reportTitle — Title text to show in report
string

The title text that shows up in the report.
Data Types: string

reportPath — Destination directory to save report
string

The destination directory where the function saves the report.

If you are working from an active Cadence Virtuoso® ADE session, by default the function saves the
report in the maestro/documents folder. Otherwise, the function saves the report in the present
working directory.
Data Types: string

 msaSessionUpdate

6-11

msaVisibility — Keep Mixed Signal Analyzer session open after update operation
true (default) | false

Determine whether to keep the Mixed Signal Analyzer app session open after the update operation.
By default, the session is kept open.
Data Types: string

Version History
Introduced in R2023a

See Also
adeinfo2msa | Mixed Signal Analyzer

6 Functions:Utilities

6-12

tr0Reader
Converts transient analysis simulation results from Synopsys to CSV file or MATLAB table

Syntax
tr0Reader

Description
tr0Reader converts the transient analysis simulation results from the FINESIM and HSPICE
Synopsys® simulator to a CSV file or a MATLAB table, as defined by outputType. Synopsys saves the
transient analysis simulation results in a tr0 file. The function only supports binary tr0 files.

If you do not define the location of the tr0 file, the function looks for them in the present working
directory.

If you do not define the location of the output file to be saved, the function saves them in the present
working directory.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
tr0Reader(tr0Filename='tran.tr0',outputType='mat',outputFileName='tranSim')
converts the simulation results contained in the tran.tr0 file to a MATLAB named tranSim.

tr0FileName — Name of tr0 file
string

Name of the tr0 file that contains the simulation results that needs to be converted to a CSV or MAT
file, specified as a string.
Data Types: string

tr0FilePath — Location of tr0 file
string

Location of the tr0 file that needs to be converted, specified as a string. The default location is the
present working directory.
Data Types: string

outputType — Type of output file
csv | mat

Type of the output file, specified as either csv or mat.

 tr0Reader

6-13

Data Types: string

outputPath — Location of output file
string

Location of the converted output file that needs to be saved, specified as a string. The default location
is the present working directory.
Data Types: string

outputFileName — Name of output file
string

Name of the converted output file, specified as a string.
Data Types: string

Version History
Introduced in R2023a

6 Functions:Utilities

6-14

	Mixed Signal Analyzer
	Blocks: Data Converters
	Sampling Clock Source
	Delta Sigma Modulator
	Flash ADC
	SAR ADC
	Binary Weighted DAC
	Segmented DAC
	ADC AC Measurement
	ADC DC Measurement
	Aperture Jitter Measurement
	DAC AC Measurement
	DAC DC Measurement
	ADC Testbench
	DAC Testbench

	Blocks: PLL
	Charge Pump
	Dual Modulus Prescaler
	Fractional Clock Divider with Accumulator
	Fractional Clock Divider with DSM
	Loop Filter
	PFD
	Single Modulus Prescaler
	VCO
	Ring Oscillator VCO
	Fractional N PLL with Accumulator
	Fractional N PLL with Delta Sigma Modulator
	Integer N PLL with Dual Modulus Prescaler
	Integer N PLL with Single Modulus Prescaler
	Lock Time Measurement
	Phase Noise Measurement
	PFD and Charge Pump Testbench
	PLL Testbench
	VCO Testbench

	Blocks: Utilities
	Linear Circuit Wizard
	Logic Decision
	Slew Rate
	Timing Measurement
	Clock Jitter Measurement
	Variable Pulse Delay
	Lowpass Resampler
	Binary Vector Conversion
	Operational Amplifier
	Clock Generator
	Signal Sampler
	Eye Diagram

	Functions: Data Converters
	inldnl
	calibrateADC
	calibrateDAC

	Functions: Phase-Locked Loop
	phaseNoiseMeasure
	phaseNoiseToJitter
	timeDomainSignal2DutyCycle
	timeDomainSignal2FallTime
	timeDomainSignal2RiseTime

	Functions:Utilities
	lowpassResample
	adeinfo2msa
	msaSessionUpdate
	tr0Reader

